1.

Record Nr.

UNISALENTO991001232519707536

Autore

Solazzo, Vito

Titolo

I politopi. Tesi di laurea / laureando Vito Solazzo ; relat. G. De Cecco

Pubbl/distr/stampa

Lecce : Università degli studi. Facoltà di Scienze. Corso di laurea in Matematica, a.a. 1986-87

Classificazione

AMS 51M20

Altri autori (Persone)

De Cecco, Giuseppe

Disciplina

516.23

Soggetti

Polytopes

Lingua di pubblicazione

Italiano

Formato

Materiale a stampa

Livello bibliografico

Monografia

2.

Record Nr.

UNINA9910782222403321

Titolo

Fundamentals and applications of biophotonics in dentistry / / [edited by] Anil Kishen, Anand Asundi

Pubbl/distr/stampa

London, : Imperial College Press

Hackensack, NJ, : Distributed by World Scientific, c2007

ISBN

1-281-86750-0

9786611867508

1-86094-883-9

Descrizione fisica

1 online resource (341 pages)

Collana

Series on biomaterials and bioengineering ; ; v. 4

Altri autori (Persone)

KishenAnil

AsundiAnand

Disciplina

617.60028

Soggetti

Lasers in dentistry

Photochemotherapy

Laser spectroscopy

Photonics

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia



Note generali

Description based upon print version of record.

Nota di bibliografia

Includes bibliographical references.

Nota di contenuto

Preface; Contents; FUNDAMENTALS; Chapter 1 Introduction; 1.1 Introduction; 1.2 Definition and Significance; 1.3 Classification of Biophotonics in Dentistry; 1.3.1 Diagnostic; 1.3.2 Therapeutic; 1.3.3 Research; 1.4 Future Opportunities; 1.5 Scope of this Book; Chapter 2 Photomechanics; 2.1 Introduction to Mechanics; 2.1.1 Force and Stress; 2.1.2 Deformation and Strain; 2.1.3 Stress-Strain Equations; 2.2 Basic Optical Engineering; 2.2.1 Geometrical Optics; 2.2.2 Physical (Wave) Optics; 2.2.3 Photonics; 2.3 Photomechanics; 2.3.1 Moire and Grid Methods; 2.3.2 Speckle Methods

2.3.3 Photoelasticity; 2.3.4 Holography; 2.3.5 Digital Photomechanics; 2.4 Concluding Remarks; Chapter 3 Biomedical Imaging; 3.1 Introduction; 3.2 Non-Linear Optical Microscopy (NLOM): Multiphoton Excited Fluorescence (MPEF) and Second Harmonic Generation (SGH); 3.2.1 Principles of NLOM; 3.2.2 Development and Applications of NLOM; 3.2.3 NLOM in Dentistry; 3.3 Optical Coherence Tomography (OCT); 3.3.1 Principles of OCT; 3.3.2 Developments and Applications of OCT; 3.3.3 OCT in Dentistry; 3.4 Coherent Anti-Stokes Raman Scattering (CARS) and Modulated Imaging (MI)

3.5 Fluorescence Contrast Enhancement; 3.6 Concluding Remarks; Chapter 4 Spectroscopy; 4.1 Introduction; 4.2 Molecular Orbitals and Transitions; 4.3 Transition Dipole Moment; 4.4 Spin Selection Rule; 4.5 Franck-Condon Principle; 4.6 Jablonski Diagram; 4.7 Stokes Shift; 4.8 Spectrophotometry; 4.9 Fluorescence Intensity and Lifetime; 4.10 Spectrofluorimetry; 4.11 Fluorescence Quenching; 4.12 Fluorescence Resonance Energy Transfer (FRET); 4.13 Fourier Transform Infrared (FTIR) Spectroscopy; 4.14 Concluding Remarks; Chapter 5 Lasers and Laser Tissue Interaction; 5.1 Introduction; 5.2 Laser Basics

5.2.1 Characteristics of Lasers; 5.3 Light Propagation in Tissue; 5.4 Optical Imaging and Diagnosis; 5.4.1 Optical Imaging; 5.4.2 Optical Spectroscopic Diagnosis; 5.5 Optical Processing of Tissue; 5.5.1 Photothermal Effects; 5.5.2 Photomechanical Effects; 5.5.3 Photochemical Effects; 5.5.4 Applications of Laser Processing of Tissue; 5.6 Concluding Remarks; Chapter 6 Mechanisms and Applications of Photodynamic Therapy; 6.1 Historical Background; 6.2 Photosensitizers; 6.3 Light Applicators; 6.4 PDT Mechanisms; 6.4.1 Photophysics and Photochemistry; 6.4.2 Biological Effect; 6.5 PDT Dosimetry

6.6 Progress in Clinical Application; 6.6.1 Non-Malignant Diseases; 6.6.2 Malignant Diseases; 6.7 PDT in Dentistry; 6.7.1 Technical Challenges; 6.7.2 Current Status; 6.8 Concluding Remarks; APPLICATIONS; Chapter 7 Dental Photo-Biomechanics; 7.1 Introduction; 7.2 Photoelasticity; 7.2.1 Introduction; 7.2.2 Photoelastic Models; 7.2.3 Polariscope; 7.2.4 Photoelastic Fringe Analysis; 7.2.5 Applications of Photoelasticity in Dentistry; 7.3 Moire Interferometry; 7.3.1 Introduction; 7.3.2 Specimen Grating and Moire Interferometer; 7.3.3 Applications of Moire Technique in Dentistry; 7.4 Electronic Speckle Pattern Correlation Interferometry

Sommario/riassunto

Biophotonics in dentistry is a rapidly growing area. Unlike other books, this invaluable compendium touches on the fundamental areas in biophotonics. Contributed by world-renowned authors, it provides a basic understanding on a range of topics for individuals of different backgrounds to acquire a minimum knowledge of research and development in biophotonics. The chapters are arranged in two major categories. The first describes the fundamental aspects of photonics, such as photomechanics, biomedical imaging, lasers and laser-tissue



interaction, spectroscopy and photodynamic therapy. The second details the applications of biophotonics, with special relevance to dentistry, including dental photobiomechanics, Raman spectroscopy and dental tissue optics