1.

Record Nr.

UNISALENTO991000767979707536

Autore

Marcellesi, Jean Baptiste

Titolo

Introduzione alla sociolinguistica / Jean-Baptiste Marcellesi, Bernard Gardin

Pubbl/distr/stampa

Roma ; Bari : Laterza, 1979

Descrizione fisica

XI, 352 p. ; 21 cm

Collana

Biblioteca di cultura moderna ; 826

Altri autori (Persone)

Gardin, Bernardauthor

Disciplina

401

Soggetti

Linguaggio - Sociologia

Linguistica

Lingua di pubblicazione

Italiano

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Trad., introduzione e note a cura di Annibale Elia



2.

Record Nr.

UNISALENTO991003635909707536

Autore

Zakeri, Saeed

Titolo

Rotation sets and complex dynamics [e-book] / Saeed Zakeri

ISBN

9783319788104

3319788108

9783319788098

3319788094

Descrizione fisica

1 online resource (xiv, 124 pages) : illustrations (some color)

Collana

Lecture notes in mathematics, 0075-8434 ; 2214

Classificazione

AMS 37-02

Disciplina

511.322

Soggetti

Set theory

Rotational motion

Ergodic theory

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Nota di bibliografia

Includes bibliographical references and index

Nota di contenuto

1. Monotone Maps of the Circle ; 2. Rotation Sets ; 3. The Deployment Theorem ; 4. Applications and Computations ; 5. Relation to Complex Dynamics

Sommario/riassunto

This monograph examines rotation sets under the multiplication by d (mod 1) map and their relation to degree d polynomial maps of the complex plane. These sets are higher-degree analogs of the corresponding sets under the angle-doubling map of the circle, which played a key role in Douady and Hubbard's work on the quadratic family and the Mandelbrot set. Presenting the first systematic study of rotation sets, treating both rational and irrational cases in a unified fashion, the text includes several new results on their structure, their gap dynamics, maximal and minimal sets, rigidity, and continuous dependence on parameters. This abstract material is supplemented by concrete examples which explain how rotation sets arise in the dynamical plane of complex polynomial maps and how suitable parameter spaces of such polynomials provide a complete catalog of all such sets of a given degree. As a main illustration, the link between rotation sets of degree 3 and one-dimensional families of cubic polynomials with a persistent indifferent fixed point is outlined. The



monograph will benefit graduate students as well as researchers in the area of holomorphic dynamics and related fields