1.

Record Nr.

UNISALENTO991000658889707536

Autore

Abhyankar, Shreeram Shankar

Titolo

Algebraic geometry and its applications : collections of papers from Shreeram S. Abhyankar's 60th birthday conference / Chandrajit L. Bajaj, editor

Pubbl/distr/stampa

New York : Springer-Verlag, c1994

ISBN

0387941762

Descrizione fisica

xxii, 536 p. : ill. ; 25 cm.

Classificazione

AMS 13-06

AMS 14-06

QA564.A355

Altri autori (Persone)

Bajaj, Chanderjit

Disciplina

516.35

Soggetti

Algebraic geometry - Congresses

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Includes bibliographical references



2.

Record Nr.

UNINA9910367254203321

Autore

Roni Saiyidi Mat

Titolo

Conducting quantitative research in education / / Saiyidi Mat Roni, Margaret Kristin Merga, Julia Elizabeth Morris

Pubbl/distr/stampa

Singapore : , : Springer Singapore : , : Imprint : Springer, , [2020]

©2020

ISBN

981-13-9132-7

Edizione

[1st edition 2020.]

Descrizione fisica

1 online resource (viii, 201 pages) : illustrations

Disciplina

370.72

Soggetti

Management - Study and teaching

Big data

Statistics

Management Education

Big Data/Analytics

Statistics for Social Sciences, Humanities, Law

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Nota di bibliografia

Includes bibliographical references and index.

Nota di contenuto

Introduction -- Getting started: What, where, why -- Conducting research with children and students -- Data types and samples -- Data preparation -- Analysis: Difference between groups -- Analysis: Correlation -- Analysis: Regression -- Write up and research translation -- Conclusion and further reading.

Sommario/riassunto

This book provides a clear and straightforward guide for all those seeking to conduct quantitative research in the field of education, using primary research data samples. While positioned as less powerful and somehow inferior, non-parametric tests can be very useful where the research can only be designed to accommodate data structure which is ordinal, or scale but violates a normality assumption, which is required for parametric tests. Non-parametric data are a staple of educational research, and as such, it is essential that educational researchers learn how to work with these data with confidence and rigour.