1.

Record Nr.

UNISALENTO991000648219707536

Titolo

Advances in the theory of Riemann surfaces : proceedings of the 1969 Stony Brook conference / edited by Lars V. Ahlfors...[et al.]

Pubbl/distr/stampa

Princeton : Princeton Univ. Press, 1971

ISBN

069108081X

Descrizione fisica

viii, 420 p. ; 23 cm.

Collana

Annals of mathematics studies ; 66

Classificazione

QA333.A35

AMS 30-06

AMS 30F

Altri autori (Persone)

Ahlfors, Lars Valerian

Disciplina

515.93

Soggetti

Functions of a complex variable - Congresses

Riemann surfaces - Congresses

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Proceedings of the 2nd of a series of meetings; proceedings of the 3rd are entered under Conference on Discontinuous Groups and Riemann Surfaces, University of Maryland, 1973.

Nota di bibliografia

Includes bibliographical references



2.

Record Nr.

UNINA9910830606003321

Titolo

Spatial interpolation for climate data [[electronic resource] ] : the use of GIS in climatology and meterology / / edited by Hartwig Dobesch, Pierre Dumolard, Izabela Dyras

Pubbl/distr/stampa

London ; ; Newport Beach, CA, : ISTE, 2007

ISBN

1-280-84783-2

9786610847839

0-470-39491-9

0-470-61226-6

1-84704-620-7

Descrizione fisica

1 online resource (304 p.)

Collana

Geographical information systems series

Altri autori (Persone)

DobeschHartwig

DumolardPierre

DyrasIzabela

Disciplina

551.60285

Soggetti

Climatology - Data processing

Meteorology - Data processing

Geospatial data - Mathematical models

Geographic information systems

Spatial data infrastructures

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Description based upon print version of record.

Nota di bibliografia

Includes bibliographical references and index.

Nota di contenuto

Spatial Interpolation for Climate Data; Table of Contents; Preface; Part 1. GIS to Manage and Distribute Climate Data; Chapter 1. GIS, Climatology and Meteorology; 1.1. GIS technology and spatial data (working group 1); 1.1.1. Introduction; 1.1.2. Weather and GIS; 1.1.3. Geographical data, environmental data and weather data; 1.1.4. A GIS approach to access weather data; 1.2. Data and metadata; 1.2.1. Introduction; 1.2.2. Important datasets; 1.2.3. Metadata; 1.2.4. Open Geospatial Consortium; 1.2.5. EU strategies for data handling and standards

1.2.6. Meteorological datasets, important projects and programs1.2.7. Projects using Earth Observation satellites; 1.3. Interoperability; 1.3.1.



Introduction; 1.3.2. Technology for service-oriented architectures; 1.3.3. Interoperability in GIS; 1.3.4. Open Geospatial Consortium foundation ideas; 1.3.5. Standardized geospatial Web services; 1.3.6. GIS and AS interoperability potential: data model and formats; 1.3.7. Atmospheric data model; 1.3.8. Support from GIS for atmospheric data formats; 1.4. Conclusions; 1.5. Bibliography; Chapter 2. SIGMA: A Web-based GIS for Environmental Applications

2.1. Introduction2.2. CPTEC-INPE; 2.3. SIGMA; 2.3.1. Basic functions; 2.4. Impacts of weather conditions on the economy; 2.5. Severe Weather Observation System (SOS); 2.5.1. Tracking of convective clouds; 2.5.2. Risk of lightning occurrence; 2.6. SOS interface; 2.7. Conclusions; 2.8. Acknowledgements; 2.9. Bibliography; Chapter 3. Web Mapping: Different Solutions using GIS; 3.1. Introduction; 3.2. Examples of Web mapping based on the usage of GIS technology in offline mode; 3.3. Examples of Web mapping using GIS tools in online mode; 3.4. Conclusion; 3.5. Bibliography

Chapter 4. Comparison of Geostatistical and Meteorological Interpolation Methods (What is What?)4.1. Introduction; 4.2. Mathematical statistical model of spatial interpolation; 4.2.1. Statistical parameters; 4.2.2. Linear meteorological model for expected values; 4.2.3. Linear regression formula; 4.3. Geostatistical interpolation methods; 4.3.1. Ordinary kriging formula; 4.3.2. Universal kriging formula; 4.3.3. Modeling of unknown statistical parameters in geostatistics; 4.4. Meteorological interpolation; 4.4.1. Meteorological interpolation formula

4.4.2. Possibility of modeling unknown statistical parameters in meteorology4.4.3. Difference between geostatistics and meteorology; 4.5. Software and connection of topics; 4.6. Example of the MISH application; 4.7. Bibliography; Chapter 5. Uncertainty from Spatial Sampling: A Case Study in the French Alps; 5.1. Introduction; 5.2. The sample as a whole; 5.3. Looking in detail where the sample is not representative; 5.4. Summarizing the sampling uncertainty; 5.4.1. 2D simplification; 5.4.2. 3D generalization; 5.4.3. Geographic homogenous sub-regions of the sample

5.4.4. Interpolation of a climate parameter

Sommario/riassunto

This title gives an authoritative look at the use of Geographical Information Systems (GIS) in climatology and meterology. GIS provides a range of strategies, from traditional methods, such as those for hydromet database analysis and management, to new developing methods. As such, this book will provide a useful reference tool in this important aspect of climatology and meterology study.