1.

Record Nr.

UNISALENTO991000489379707536

Autore

Marazzi, Christian

Titolo

Finanza bruciata / Christian Marazzi ; Prefazione di Silvano Toppi

Pubbl/distr/stampa

Bellinzona : Edizioni Casagrande, 2009

ISBN

9788877135537

Descrizione fisica

140 p. ; 19 cm

Collana

Alfabeti

Altri autori (Persone)

Toppi, Silvano

Disciplina

337.0905

Soggetti

Economia mondiale

Crisi economiche

Capitalismo

Lingua di pubblicazione

Italiano

Formato

Materiale a stampa

Livello bibliografico

Monografia



2.

Record Nr.

UNINA9910141918003321

Autore

Alonso-Gutierrez David

Titolo

Approaching the Kannan-Lovász-Simonovits and Variance Conjectures / / by David Alonso-Gutiérrez, Jesús Bastero

Pubbl/distr/stampa

Cham : , : Springer International Publishing : , : Imprint : Springer, , 2015

ISBN

3-319-13263-6

Edizione

[1st ed. 2015.]

Descrizione fisica

1 online resource (X, 148 p.)

Collana

Lecture Notes in Mathematics, , 0075-8434 ; ; 2131

Disciplina

515.7

Soggetti

Functional analysis

Convex geometry

Discrete geometry

Probabilities

Functional Analysis

Convex and Discrete Geometry

Probability Theory and Stochastic Processes

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Bibliographic Level Mode of Issuance: Monograph

Nota di contenuto

The Conjectures -- Main Examples -- Relating the Conjectures -- Appendix -- Index.

Sommario/riassunto

Focusing on two central conjectures from the field of Asymptotic Geometric Analysis, the Kannan-Lovász-Simonovits spectral gap conjecture and the variance conjecture, these Lecture Notes present the theory in an accessible way, so that interested readers, even those who are not experts in the field, will be able to appreciate the topics treated. Employing a style suitable for professionals with little background in analysis, geometry or probability, the work goes directly to the connection between isoperimetric-type inequalities and functional inequalities, allowing readers to quickly access the core of these conjectures. In addition, four recent and important results concerning this theory are presented. The first two are theorems attributed to Eldan-Klartag and Ball-Nguyen, which relate the variance and the KLS conjectures, respectively, to the hyperplane conjecture. The remaining two present in detail the main ideas needed to prove the best known



estimate for the thin-shell width given by Guédon-Milman, and an approach to Eldan’s work on the connection between the thin-shell width and the KLS conjecture.