1.

Record Nr.

UNISALENTO991000332919707536

Titolo

Start up innovative : requisiti legali, incentivi fiscali, crowdfunding, rapporti di lavoro, marchi e brevetti / a cura di Massimiliano Arena ; con i contributi di Domenico De Marinis ... [et al.]

Pubbl/distr/stampa

Pisa : Pacini, 2020

ISBN

9788833790664

Descrizione fisica

199 p. ; 22 cm.

Collana

Pratici Pacini [I] ; 19

Altri autori (Persone)

Arena, Massimiliano

De Marinis, Domenico

Disciplina

658.1148

Soggetti

Imprese - Avviamento - Finanziamenti

Lingua di pubblicazione

Non definito

Formato

Materiale a stampa

Livello bibliografico

Monografia



2.

Record Nr.

UNISALENTO991004331632407536

Autore

Lobera, D. Melchiorre

Titolo

Cuneo : chiese, monumenti e panorami / Melchiorre D. Lobera

Pubbl/distr/stampa

Milano : Sonzogno, [1924-1929?]

Descrizione fisica

16 p. : ill. ; 30 cm

Collana

Le cento città d'Italia illustrate ; 55

Disciplina

945.131

914.5131

Soggetti

Cuneo Guide

Lingua di pubblicazione

Italiano

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

In cartella

3.

Record Nr.

UNINA9910503005803321

Autore

Ahmed N. U (Nasir Uddin)

Titolo

Optimal Control of Dynamic Systems Driven by Vector Measures : Theory and Applications / / by N. U. Ahmed, Shian Wang

Pubbl/distr/stampa

Cham : , : Springer International Publishing : , : Imprint : Springer, , 2021

ISBN

3-030-82139-0

Edizione

[1st ed. 2021.]

Descrizione fisica

1 online resource (328 pages)

Disciplina

629.8312

Soggetti

Differential equations

Stochastic processes

System theory

Control theory

Mathematical optimization

Calculus of variations

Mathematical analysis

Differential Equations

Stochastic Systems and Control

Systems Theory, Control

Calculus of Variations and Optimization

Analysis



Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Nota di bibliografia

Includes bibliographical references and index.

Nota di contenuto

1 Mathematical Preliminaries -- 2 Linear Systems -- 3 Nonlinear Systems -- 4 Optimal Control: Existence Theory -- Optimal Control: Necessary Conditions of Optimality -- 6 Stochastic Systems Controlled by Vector Measures -- 7 Applications to Physical Examples -- Bibliography -- Index.

Sommario/riassunto

This book is devoted to the development of optimal control theory for finite dimensional systems governed by deterministic and stochastic differential equations driven by vector measures. The book deals with a broad class of controls, including regular controls (vector-valued measurable functions), relaxed controls (measure-valued functions) and controls determined by vector measures, where both fully and partially observed control problems are considered. In the past few decades, there have been remarkable advances in the field of systems and control theory thanks to the unprecedented interaction between mathematics and the physical and engineering sciences. Recently, optimal control theory for dynamic systems driven by vector measures has attracted increasing interest. This book presents this theory for dynamic systems governed by both ordinary and stochastic differential equations, including extensive results on the existence of optimal controls and necessary conditions for optimality. Computational algorithms are developed based on the optimality conditions, with numerical results presented to demonstrate the applicability of the theoretical results developed in the book. This book will be of interest to researchers in optimal control or applied functional analysis interested in applications of vector measures to control theory, stochastic systems driven by vector measures, and related topics. In particular, this self-contained account can be a starting point for further advances in the theory and applications of dynamic systems driven and controlled by vector measures.