1.

Record Nr.

UNINA990001616600403321

Autore

Reale, Nicola

Titolo

Dizionario chimico-farmaceutico / Nicola Reale

Pubbl/distr/stampa

Napoli : Reale Accademia delle Scienze, [1889]

Descrizione fisica

1414 p., 2 tav. ; 24 cm

Disciplina

615.19

Locazione

FAGBC

Collocazione

60 540 B 8

Lingua di pubblicazione

Italiano

Formato

Materiale a stampa

Livello bibliografico

Monografia

2.

Record Nr.

UNISALENTO991000296189707536

Autore

Conta, Gioia

Titolo

I luoghi dell'arte : Val d'Isarco e valli laterali. Val Sarentina / Gioia Conta

Pubbl/distr/stampa

Terlano (Bz) : Casa Editrice Alpina, 1991

Lingua di pubblicazione

Non definito

Formato

Materiale a stampa

Livello bibliografico

Monografia



3.

Record Nr.

UNINA9910300106503321

Autore

Zaslavski Alexander J

Titolo

Algorithms for Solving Common Fixed Point Problems / / by Alexander J. Zaslavski

Pubbl/distr/stampa

Cham : , : Springer International Publishing : , : Imprint : Springer, , 2018

ISBN

3-319-77437-9

Edizione

[1st ed. 2018.]

Descrizione fisica

1 online resource (VIII, 316 p.)

Collana

Springer Optimization and Its Applications, , 1931-6828 ; ; 132

Disciplina

515.64

Soggetti

Calculus of variations

Operator theory

Numerical analysis

Calculus of Variations and Optimal Control; Optimization

Operator Theory

Numerical Analysis

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Nota di contenuto

1. Introduction -- 2. Iterative methods in metric spaces -- 3. Dynamic string-averaging methods in normed spaces -- 4. Dynamic string-maximum methods in metric spaces -- 5. Abstract version of CARP algorithm -- 6. Proximal point algorithm -- 7. Dynamic string-averaging proximal point algorithm -- 8. Convex feasibility problems.

Sommario/riassunto

This book details approximate solutions to common fixed point problems and convex feasibility problems in the presence of perturbations. Convex feasibility problems search for a common point of a finite collection of subsets in a Hilbert space; common fixed point problems pursue a common fixed point of a finite collection of self-mappings in a Hilbert space. A variety of algorithms are considered in this book for solving both types of problems, the study of which has fueled a rapidly growing area of research. This monograph is timely and highlights the numerous applications to engineering, computed tomography, and radiation therapy planning. Totaling eight chapters, this book begins with an introduction to foundational material and moves on to examine iterative methods in metric spaces. The dynamic



string-averaging methods for common fixed point problems in normed space are analyzed in Chapter 3. Dynamic string methods, for common fixed point problems in a metric space are introduced and discussed in Chapter 4. Chapter 5 is devoted to the convergence of an abstract version of the algorithm which has been called component-averaged row projections (CARP). Chapter 6 studies a proximal algorithm for finding a common zero of a family of maximal monotone operators. Chapter 7 extends the results of Chapter 6 for a dynamic string-averaging version of the proximal algorithm. In Chapters 8 subgradient projections algorithms for convex feasibility problems are examined for infinite dimensional Hilbert spaces. .