| |
|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA990000903070403321 |
|
|
Titolo |
Hydrolysis, Oxidation and Reduction ; Edited by Stan M. Roberts and Geraldine Poignant |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Chichester : John Wiley & Sons, LTD, 2002 |
|
|
|
|
|
|
|
ISBN |
|
|
|
|
|
|
Descrizione fisica |
|
XVIII, 225 p. : ill. ; 24 cm |
|
|
|
|
|
|
Collana |
|
Catalysts for Fine Chemical Synthesis ; vol.1 |
|
|
|
|
|
|
Locazione |
|
|
|
|
|
|
Collocazione |
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
2. |
Record Nr. |
UNISA996647864303316 |
|
|
Autore |
Piangerelli Marco |
|
|
Titolo |
Discovering Drift Phenomena in Evolving Landscapes : First International Workshop, DELTA 2024, Barcelona, Spain, August 26, 2024, Proceedings / / edited by Marco Piangerelli, Bardh Prenkaj, Ylenia Rotalinti, Ananya Joshi, Giovanni Stilo |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2025 |
|
|
|
|
|
|
|
ISBN |
|
|
|
|
|
|
|
|
Edizione |
[1st ed. 2025.] |
|
|
|
|
|
Descrizione fisica |
|
1 online resource (259 pages) |
|
|
|
|
|
|
Collana |
|
Lecture Notes in Computer Science, , 1611-3349 ; ; 15013 |
|
|
|
|
|
|
Altri autori (Persone) |
|
PrenkajBardh |
RotalintiYlenia |
JoshiAnanya |
StiloGiovanni |
|
|
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Artificial intelligence |
Data mining |
Artificial Intelligence |
Data Mining and Knowledge Discovery |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Sommario/riassunto |
|
This book constitutes the post-conference proceedings of the First International Workshop on Discovering Drift Phenomena in Evolving Landscapes, DELTA 2024, held in Barcelona, Spain, on August 26, 2024. The 9 full papers presented together with 1 short paper were carefully reviewed and selected from 17 submissions. The papers are grouped into three topical sections, namely: adaptive and robust learning in dynamic environments; challenges and solutions in drift detection and anomaly explanation; and innovative approaches to concept drift detection and landscape shifts. |
|
|
|
|
|
|
|
| |