1.

Record Nr.

UNISA996601666903316

Autore

Giordani Paolo (Writer on statistics.

Titolo

An Introduction to Clustering with R / / by Paolo Giordani, Maria Brigida Ferraro, Francesca Martella

Pubbl/distr/stampa

Springer Singapore, 2020

Singapore : , : Springer Singapore : , : Imprint : Springer, , 2020

ISBN

981-13-0553-6

Edizione

[1st ed. 2020.]

Descrizione fisica

1 online resource (346 pages)

Collana

Behaviormetrics: Quantitative Approaches to Human Behavior, , 2524-4027 ; ; 1

Disciplina

519.53

Soggetti

StatisticsĀ 

Biostatistics

R (Computer program language)

Statistical Theory and Methods

Statistics and Computing/Statistics Programs

Applied Statistics

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Nota di bibliografia

Includes bibliographical references.

Nota di contenuto

Section: Introduction -- 1.1 Introduction to clustering -- 1.2 R software -- 2. Section: Standard algorithms -- 2.1 Introduction -- 2.2 Distances and dissimilarities -- 2.3 Hierarchical methods -- 2.4 Non-hierarchical methods -- 2.5 Cluster validity -- 3. Section: Fuzzy algorithms -- 3.1 Introduction -- 3.2 Fuzzy K-means -- 3.3 Fuzzy K-medoids -- 3.4 Other fuzzy variants -- 3.5 Cluster validity -- 4. Section: Model-based algorithms -- 4.1 Introduction -- 4.2 Mixture of Gaussian distributions -- 4.3 Mixture of non-Gaussian distributions -- 4.4 Parsimonious mixture models.

Sommario/riassunto

The purpose of this book is to thoroughly prepare the reader for applied research in clustering. Cluster analysis comprises a class of statistical techniques for classifying multivariate data into groups or clusters based on their similar features. Clustering is nowadays widely used in several domains of research, such as social sciences, psychology, and marketing, highlighting its multidisciplinary nature. This book provides an accessible and comprehensive introduction to



clustering and offers practical guidelines for applying clustering tools by carefully chosen real-life datasets and extensive data analyses. The procedures addressed in this book include traditional hard clustering methods and up-to-date developments in soft clustering. Attention is paid to practical examples and applications through the open source statistical software R. Commented R code and output for conducting, step by step, complete cluster analyses are available. The book is intended for researchers interested in applying clustering methods. Basic notions on theoretical issues and on R are provided so that professionals as well as novices with little or no background in the subject will benefit from the book.