1.

Record Nr.

UNISA996558568803316

Autore

de Sousa A. Augusto

Titolo

Computer Vision, Imaging and Computer Graphics Theory and Applications [[electronic resource] ] : 17th International Joint Conference, VISIGRAPP 2022, Virtual Event, February 6–8, 2022, Revised Selected Papers / / edited by A. Augusto de Sousa, Kurt Debattista, Alexis Paljic, Mounia Ziat, Christophe Hurter, Helen Purchase, Giovanni Maria Farinella, Petia Radeva, Kadi Bouatouch

Pubbl/distr/stampa

Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2023

ISBN

3-031-45725-0

Edizione

[1st ed. 2023.]

Descrizione fisica

1 online resource (343 pages)

Collana

Communications in Computer and Information Science, , 1865-0937 ; ; 1815

Altri autori (Persone)

DebattistaKurt

PaljicAlexis

ZiatMounia

HurterChristophe

PurchaseHelen

FarinellaGiovanni Maria

RadevaPetia

BouatouchKadi

Disciplina

006

Soggetti

Image processing - Digital techniques

Computer vision

Computer engineering

Computer networks

Artificial intelligence

Application software

User interfaces (Computer systems)

Human-computer interaction

Computer Imaging, Vision, Pattern Recognition and Graphics

Computer Engineering and Networks

Artificial Intelligence

Computer and Information Systems Applications

User Interfaces and Human Computer Interaction

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia



Nota di contenuto

Intro -- Preface -- Organization -- Contents -- Automatic Threshold RanSaC Algorithms for Pose Estimation Tasks -- 1 Introduction -- 2 RanSaC Methods -- 2.1 Notation -- 2.2 History of RanSaC Algorithms -- 3 Adaptative RanSaC Algorithms -- 4 Data Generation Methodology -- 4.1 Models and Estimators -- 4.2 Semi-artificial Data Generation Method -- 5 Benchmark and Results -- 5.1 Performance Measures -- 5.2 Parameters -- 5.3 Results -- 5.4 Analysis and Comparison -- 6 Conclusion -- References -- Semi-automated Generation of Accurate Ground-Truth for 3D Object Detection -- 1 Introduction -- 2 Related Work on 3D Object Detection -- 2.1 Techniques for Early Object Detection -- 2.2 CNN-Based 3D Object Detection -- 2.3 Conclusions on Related Work -- 3 Semi-automated 3D Dataset Generation -- 3.1 Orientation Estimation -- 3.2 3D Box Estimation -- 4 Experiments -- 4.1 Experimental Setup and Configuration -- 4.2 Evaluation 1: Annotation-Processing Chain -- 4.3 Evaluation 2: 3D Object Detector Trained on the Annotation-Processing Configurations -- 4.4 Cross-Validation on KITTI Dataset -- 4.5 Unsupervised Approach -- 5 Conclusion -- References -- A Quantitative and Qualitative Analysis on a GAN-Based Face Mask Removal on Masked Images and Videos -- 1 Introduction -- 2 Related Works -- 2.1 Inpainting -- 2.2 Face Completion -- 3 Method -- 3.1 Pix2pix-Based Inpainting -- 3.2 Custom Loss Function -- 3.3 System Overview -- 3.4 Predicting Feature Points on a Face -- 4 Experiment -- 4.1 Image Evaluation -- 4.2 Video Evaluation -- 5 Discussion -- 5.1 Quality of Generated Images -- 5.2 Discriminating Facial Expressions -- 5.3 Generating Smooth Videos -- 5.4 Additional Quantitative Analyses -- 6 Limitations -- 7 Conclusion -- References -- Dense Material Segmentation with Context-Aware Network -- 1 Introduction -- 2 Related Works -- 2.1 Material Segmentation Datasets.

2.2 Fully Convolutional Network -- 2.3 Material Segmentation with FCN -- 2.4 Global and Local Training -- 2.5 Boundary Refinement -- 2.6 Self-training -- 3 CAM-SegNet Architecture -- 3.1 Feature Sharing Connection -- 3.2 Context-Aware Dense Material Segmentation -- 3.3 Self-training Approach -- 4 CAM-SegNet Experiment Configurations -- 4.1 Dataset -- 4.2 Evaluation Metrics -- 4.3 Implementation Details -- 5 CAM-SegNet Performance Analysis -- 5.1 Quantitative Analysis -- 5.2 Qualitative Analysis -- 5.3 Ablation Study -- 6 Conclusions -- References -- Partial Alignment of Time Series for Action and Activity Prediction -- 1 Introduction -- 2 Related Work -- 3 Temporal Alignment of Action/Activity Sequences -- 3.1 Alignment Methods - Segmented Sequences -- 3.2 Alignment Methods - Unsegmented Sequences -- 3.3 Action and Activity Prediction -- 4 Experimental Results -- 4.1 Datasets -- 4.2 Alignment-Based Prediction in Segmented Sequences -- 4.3 Alignment-Based Action Prediction in Unsegmented Sequences -- 4.4 Graph-Based Activity Prediction -- 4.5 Duration Prognosis -- 5 Conclusions -- References -- Automatic Bi-LSTM Architecture Search Using Bayesian Optimisation for Vehicle Activity Recognition -- 1 Introduction -- 2 Related Work -- 2.1 Trajectory Representation and Analysis -- 2.2 Deep Neural Network Optimisation -- 3 Method -- 3.1 Qualitative Feature Representation -- 3.2 Automatic Bi-LSTM Architecture Search -- 3.3 Optimal Architecture Selection -- 3.4 VNet Modelling -- 4 Vehicle Activity Datasets -- 4.1 Highway Drone Dataset -- 4.2 Traffic Dataset -- 4.3 Vehicle Obstacle Interaction Dataset -- 4.4 Next Generation Simulation Dataset -- 4.5 Combined Dataset -- 5 Experiments and Results -- 5.1 Optimal Architecture Selection -- 5.2 Evaluation of the Optimal Architecture -- 6 Discussion -- 7 Conclusion -- References.

ANTENNA: Visual Analytics of Mobility Derived from Cellphone Data --



1 Introduction -- 2 Related Work -- 2.1 Reconstruction and Extraction of Trajectories -- 2.2 Visual Analytics of Movement -- 3 System Overview -- 3.1 Backend and Frontend -- 4 Data -- 4.1 Database -- 4.2 Processing Pipeline -- 5 ANTENNA's Visualization -- 5.1 Tasks and Design Requirements -- 5.2 Visual Query -- 5.3 Grid Aggregation Mode -- 5.4 Road Aggregation Mode -- 6 Usage Scenarios -- 6.1 Scenario 1: Inter-Urban Movements -- 6.2 Scenario 2: Group Movements -- 7 User Testing -- 7.1 Methodology -- 7.2 Tasks -- 7.3 Results -- 8 Discussion -- 9 Conclusion -- References -- Influence of Errors on the Evaluation of Text Classification Systems -- 1 Introduction -- 2 Setup -- 2.1 Models and Dataset -- 2.2 Explanation Methods -- 2.3 Evaluation of the Models -- 2.4 System Output and Explanation Visualization -- 3 Experiment 1: Effect on the Evaluation of One System -- 3.1 Experiment Design -- 3.2 Task and Questionnaire -- 3.3 Participant Recruitment -- 3.4 Results -- 3.5 Qualitative Results -- 4 Experiment 2: Effect on the Comparison of Two Systems -- 4.1 Experiment Design -- 4.2 Task and Questionnaire -- 4.3 Participant Recruitment -- 4.4 Results -- 5 Experiment 3: Effect of the Comparison of Two Systems (Bias Error Pattern) -- 5.1 Experiment Design -- 5.2 Results -- 6 Experiment 4: Effect of Incorrect Examples (with a Different Language) -- 6.1 Experiment Design -- 6.2 Task and Questionnaire -- 6.3 Participant Recruitment -- 6.4 Translation -- 6.5 Results -- 6.6 Qualitative Results -- 7 Discussion -- 7.1 Limitations -- 8 Conclusion -- References -- Autonomous Navigation Method Considering Passenger Comfort Recognition for Personal Mobility Vehicles in Crowded Pedestrian Spaces -- 1 Introduction -- 2 Process of Passenger Comfort Recognition.

3 Investigation of Passenger Comfort Recognition -- 3.1 Passenger Comfort Evaluation Experiment -- 3.2 Effects of Current Situation on Comfort Recognition -- 3.3 Effects of Future Status on Comfort Recognition -- 3.4 Characteristics of Passenger Comfort Recognition -- 4 Proposal of an Autonomous Navigation Method Considering Passenger Comfort Recognition -- 4.1 Design -- 4.2 Validation -- 5 Conclusions -- References -- The Electrodermal Activity of Player Experience in Virtual Reality Games: An Extended Evaluation of the Phasic Component -- 1 Introduction -- 2 Background -- 2.1 Related Work -- 3 Methodology -- 3.1 EDA Data Capture and Phasic Component Calculation -- 3.2 Phasic Component Analysis -- 3.3 Game Experience Analysis -- 3.4 Statistical Analyses -- 3.5 Implementation Tools -- 3.6 Ethical Considerations -- 4 Results -- 4.1 Peaks per Minute -- 4.2 Average Peak Amplitude -- 4.3 Game Experience -- 4.4 Correlation Analysis -- 5 Discussion -- 6 Conclusion and Future Work -- References -- MinMax-CAM: Increasing Precision of Explaining Maps by Contrasting Gradient Signals and Regularizing Kernel Usage -- 1 Introduction -- 2 Related Work -- 3 Contrasting Class Gradient Information -- 3.1 Intuition -- 3.2 Definition -- 3.3 Reducing Noise by Removing Negative Contributions -- 4 Reducing Shared Information Between Classifiers -- 4.1 Counterbalancing Activation Vanishing -- 5 Experimental Setup -- 5.1 Evaluations over Architectures and Problem Domains -- 5.2 Training Procedure -- 5.3 Evaluation Metrics -- 6 Results -- 6.1 Comparison Between Architectures -- 6.2 Evaluation over Distinct Problem Domains -- 6.3 Kernel Usage Regularization -- 7 Conclusions -- References -- DIAR: Deep Image Alignment and Reconstruction Using Swin Transformers -- 1 Introduction -- 2 Related Work -- 3 Dataset -- 3.1 Aligned Dataset -- 3.2 Misaligned Dataset.

4 Deep Image Alignment -- 5 Architecture -- 5.1 Deep Residual Sets -- 5.2 Video Swin Transformer -- 5.3 Image Reconstruction Using Swin Transformers -- 5.4 Training -- 6 Evaluation -- 6.1 Aggregation -- 6.2



Image Reconstruction -- 6.3 Alignment and Reconstruction: -- 7 Conclusion -- References -- Active Learning with Data Augmentation Under Small vs Large Dataset Regimes for Semantic-KITTI Dataset -- 1 Introduction -- 1.1 State of the Art -- 2 Methodology -- 3 Validation and Results -- 3.1 Class Based Learning Efficiency -- 3.2 Dataset Size Growth: 1/4 Semantic-KITTI vs Full Semantic-KITTI -- 3.3 t-SNE Problem Analysis -- 4 Conclusion -- 4.1 Challenges and Future Scope -- References -- Transformers in Unsupervised Structure-from-Motion -- 1 Introduction -- 2 Related Works -- 3 Method -- 3.1 Monocular Unsupervised SfM -- 3.2 Architecture -- 3.3 Intrinsics -- 3.4 Appearance-Based Losses -- 4 Experiments -- 4.1 Datasets -- 4.2 Architecture -- 4.3 Implementation Details -- 4.4 Evaluation Metrics -- 4.5 Impact of Architecture -- 4.6 Generalizability -- 4.7 Auxiliary Tasks -- 4.8 Depth Estimation with Learned Camera Intrinsics -- 4.9 Efficiency -- 4.10 Comparing Performance -- 5 Conclusion -- References -- A Study of Aerial Image-Based 3D Reconstructions in a Metropolitan Area -- 1 Introduction -- 2 Previous Work -- 3 Urban Environment -- 3.1 Ground Truth -- 3.2 Image Sets -- 3.3 Urban Categorization -- 4 Experimental Setup -- 4.1 3D Reconstruction Techniques -- 4.2 Pipelines Under Study -- 4.3 Alignment -- 5 Experimental Results -- 5.1 Scene Level Evaluation -- 5.2 Urban Category Centric Evaluation -- 5.3 General Pipeline Evaluation -- 6 Conclusion -- References -- Author Index.

Sommario/riassunto

This book constitutes the referred proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, VISIGRAPP 2022, Virtual Event, February 6–8, 2022. The 15 full papers included in this book were carefully reviewed and selected from 392 submissions. The purpose of VISIGRAPP is to bring together researchers and practitioners interested in both theoretical advances and applications of computer vision, computer graphics and information visualization. VISIGRAPP is composed of four co-located conferences, each specialized in at least one of the aforementioned main knowledge areas, namely GRAPP, IVAPP, HUCAPP and VISAPP. .



2.

Record Nr.

UNINA9910996486503321

Autore

Leroy Michel

Titolo

The Sustainability Imperative in Media Development : A Critical Analysis of a Self-Serving Myth / / by Michel Leroy

Pubbl/distr/stampa

Cham : , : Springer Nature Switzerland : , : Imprint : Palgrave Macmillan, , 2025

ISBN

9783031836596

3031836596

Edizione

[1st ed. 2025.]

Descrizione fisica

1 online resource (XXIV, 396 p. 24 illus., 16 illus. in color.)

Disciplina

302.2

338.9

Soggetti

Communication in economic development

Communication

Information theory

Development Communication

Media and Communication Theory

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Nota di contenuto

Part I: The Framing of Sustainability: Navigating Development Narratives -- Chapter 1: Introduction – Intending good or doing good? -- Chapter 2: Media development, an emerging and contested field -- Chapter 3: Sustainability in media action: a catch-all construct -- Chapter 4: Evaluation, a game changer for development -- Chapter 5: What is the sustainability imperative all about? -- Part II: The sustainability paradox: Balancing Future impact and self preservation -- Chapter 6: Exploring 25-year discourse of media action sustainability -- Chapter 7: In future we (don’t) trust – ambivalence of (un)sustainability -- Chapter 8: Does media action primarily sustain power imbalances? -- Chapter 9: Towards a sustainable media development goal -- Chapter 10: Conclusion – The necessary shift between sustainability and social impact.

Sommario/riassunto

This book critically examines how the media assistance and broader "development" sectors have appropriated the catch-all concept of sustainability, originally rooted in economic and environmental fields,



to suit their agendas. Analysing 289 project evaluations conducted globally between 1999 and 2019, it scrutinizes the tacit discourses underpinning what Pierre Bourdieu termed “the imperialism of the universal” in fostering media systems in the Global South. The book reveals how processes of self-legitimation operate within an increasingly competitive aid market, highlighting a shift from "post-missionary" approaches to business-driven models. Focusing on the often-overlooked African context, it explores nuanced coping capacity in Uganda and the Eastern DRC. Amid questioning of the populist wave as well as power-motivated new entrants, it challenges the recurring aid pattern, emphasizing the urgency of centering social impact and values in media assistance. It offers essential insights for scholars and practitioners navigating the evolving geopolitics of development and public diplomacy. Michel Leroy has been active in media action for over 25 years, both as an implementer and as a consultant. A member of an international research programme on media action, he holds a doctorate from the University of Dortmund. He is now a researcher focusing on the social impact.