|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNISA996550555203316 |
|
|
Titolo |
Machine Learning and Knowledge Discovery in Databases : Research Track / / edited by Danai Koutra [and four others] |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Cham, Switzerland : , : Springer Nature Switzerland AG, , [2023] |
|
©2023 |
|
|
|
|
|
|
|
|
|
ISBN |
|
|
|
|
|
|
Edizione |
[First edition.] |
|
|
|
|
|
Descrizione fisica |
|
1 online resource (758 pages) |
|
|
|
|
|
|
Collana |
|
Lecture Notes in Computer Science Series ; ; Volume 14170 |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Data mining |
Databases |
Machine learning |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references and index. |
|
|
|
|
|
|
Nota di contenuto |
|
Intro -- Preface -- Organization -- Invited Talks Abstracts -- Neural Wave Representations -- Physics-Inspired Graph Neural Networks -- Mapping Generative AI -- Contents - Part II -- Computer Vision -- Sample Prior Guided Robust Model Learning to Suppress Noisy Labels -- 1 Introduction -- 2 Related Work -- 3 Method -- 3.1 Prior Guided Sample Dividing -- 3.2 Denoising with the Divided Sets -- 4 Experiment -- 4.1 Datasets and Implementation Details -- 4.2 Comparison with State-of-the-Art Methods -- 4.3 Ablation Study -- 4.4 Generalization to Instance-Dependent Label Noise -- 4.5 Hyper-parameters Analysis -- 4.6 Discussion for Prior Generation Module -- 5 Limitations -- 6 Conclusions -- References -- DCID: Deep Canonical Information Decomposition -- 1 Introduction -- 2 Related Work -- 2.1 Canonical Correlation Analysis (CCA) -- 2.2 Multi-Task Learning (MTL) -- 3 Univariate Shared Information Retrieval -- 3.1 Problem Setting -- 3.2 Evaluating the Shared Representations -- 4 Method: Deep Canonical Information Decomposition -- 4.1 Limitations of the CCA Setting -- 4.2 Deep Canonical Information Decomposition (DCID) -- 5 Experiments -- 5.1 Baselines -- 5.2 Experimental Settings -- 5.3 Learning the Shared Features Z -- 5.4 Variance Explained by Z and Model Performance -- 5.5 Obesity and the Volume of Brain Regions of Interest (ROIs) -- 6 Discussion -- 6.1 Results Summary -- 6.2 |
|
|
|
|