|
|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNISA996499871603316 |
|
|
Titolo |
Research in PDEs and related fields : the 2019 Spring School, Sidi Bel Abbès, Algeria / / Kaïs Ammari, editor |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Cham, Switzerland : , : Birkhäuser, , [2022] |
|
©2022 |
|
|
|
|
|
|
|
|
|
ISBN |
|
9783031142680 |
9783031142673 |
|
|
|
|
|
|
|
|
Descrizione fisica |
|
1 online resource (192 pages) |
|
|
|
|
|
|
Collana |
|
Tutorials, schools, and workshops in the mathematical sciences |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Control theory |
Differential equations, Partial |
Differential equations, Partial - Numerical solutions |
Teoria de control |
Equacions en derivades parcials |
Solucions numèriques |
Llibres electrònics |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references. |
|
|
|
|
|
|
Nota di contenuto |
|
Intro -- Preface -- Contents -- Sobolev Spaces and Elliptic Boundary Value Problems -- 1 Sobolev Spaces, Inequalities, Dirichlet, and Neumann Problems for the Laplacian -- 1.1 Sobolev Spaces -- 1.2 First Properties -- 1.3 Traces -- 1.4 Interpolation -- 1.5 Transposition -- 1.6 Inequalities -- 1.7 Weak Solutions -- 1.8 Strong Solutions -- 1.9 Very Weak Solutions -- 1.10 Solutions in Hs(Ω), with 0 < -- s < -- 2 -- 2 The Stokes Problem with Various Boundary Conditions -- 2.1 The Problem (S) with Dirichlet Boundary Condition -- 2.2 The Stokes Problem with Navier Type Boundary Condition -- 2.3 The Stokes Problem with Navier Boundary Condition -- References -- Survey on the Decay of the Local Energy for the Solutions of the Nonlinear Wave Equation -- 1 Introduction and Preliminaries -- 2 Scattering for the Subcritical and Critical Wave Equation -- 2.1 The Subcritical Case -- 2.1.1 Prisized Morawetz Estimate -- 2.1.2 Global Time Strichartz Norms -- 2.1.3 The Proof of Theorem 2.1 -- 2.2 The Critical Case -- |
|
|
|
|
|
|
|
|
|
|
2.2.1 Global Time Strichartz Norms -- 2.2.2 The Proof of Theorem 2.1 in the Case p=5 -- 3 Exponential Decay for the Local Energy of the Subcritical and Critical Wave Equation with Localized Semilinearity -- 3.1 Nonlinear Lax-Phillips Theory -- 3.2 Exponential Decay for the Local Energy of the Subcritical Wave Equation -- 3.2.1 The Compactness of Z(T) -- 3.2.2 Proof of Theorem 3.1 -- 3.3 Exponential Decay for the Local Energy of the Critical Wave Equation -- 4 Polynomial Decay for the Local Energy of the Semilinear Wave Equation with Small Data -- 4.1 Fundamental Lemmas -- 4.2 Proof of Theorem 4.1: Existence and Decay of the Local Energy -- 5 Decay of the Local Energy for the Solutions of the Critical Klein-Gordon Equation -- 5.1 Strichartz Norms Global in Time -- 5.2 Exponential Decay of the Local Energy of Localized Linear Klein-Gordon Equation. |
5.2.1 Semi-Group of Lax-Phillips Adapted to Localized Linear Klein-Gordon Equation -- 5.2.2 Proof of Theorem 5.9 -- 5.3 Proof of Theorem 5.1 -- Appendix -- References -- A Spectral Numerical Method to Approximate the Boundary Controllability of the Wave Equation with Variable Coefficients -- 1 Introduction -- 2 Numerical Approximation of the Control Problem -- 3 Minimal L2-Weighted Controls -- 4 Numerical Experiments -- 5 Appendix -- References -- Aggregation Equation and Collapse to Singular Measure -- 1 Introduction -- 2 Graph Reformulation and Main Results -- 3 Dini and Hölder Spaces -- 4 Modified Curved Cauchy Operators -- 5 Local Well-Posedness -- 6 Global Well-Posedness -- 6.1 Weak and Strong Damping Behavior of the Source Term -- 6.2 Global a Priori Estimates -- References -- Geometric Control of Eigenfunctions of Schrödinger Operators -- 1 Introduction -- 2 The Geometric Control Condition -- 3 Are There Examples for Which (OE(ω)) Holds and (OS(ω)) Does Not? -- 4 A Geometric Interpretation of (V-GCC) and Proof of Theorem 9 -- 5 On the Proof of Theorem 10 -- References -- Stability of a Graph of Strings with Local Kelvin-Voigt Damping -- 1 Introduction -- 2 Well-Posedness of the System -- 3 Asymptotic Behavior -- References. |
|
|
|
|
|
| |