|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNISA996495567903316 |
|
|
Titolo |
Computer vision - ECCV 2022 . Part XII : 17th European Conference, Tel Aviv, Israel, October 23-27, 2022 : proceedings / / Shai Avidan [and four others] |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Cham, Switzerland : , : Springer, , [2022] |
|
©2022 |
|
|
|
|
|
|
|
|
|
ISBN |
|
|
|
|
|
|
Descrizione fisica |
|
1 online resource (813 pages) |
|
|
|
|
|
|
Collana |
|
Lecture Notes in Computer Science |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Pattern recognition systems |
Computer vision |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Nota di contenuto |
|
Intro -- Foreword -- Preface -- Organization -- Contents - Part XII -- .26em plus .1em minus .1emExplicit Model Size Control and Relaxation via Smooth Regularization for Mixed-Precision Quantization -- 1 Introduction -- 2 Related Work -- 3 Motivation and Preliminaries -- 4 Methodology -- 4.1 Explicit Model Size Control Using Surfaces of Constant-Size Neural Networks -- 4.2 Smooth Bounded Regularization as a Booster for Quantized Training -- 4.3 Regularizers for Bit-Width Stabilization -- 4.4 Algorithm Overview -- 5 Experiments -- 5.1 Ablation Study -- 5.2 Comparison with Existing Studies -- 6 Conclusions -- References -- BASQ: Branch-wise Activation-clipping Search Quantization for Sub-4-bit Neural Networks -- 1 Introduction -- 2 Related Works -- 2.1 Low-bit Quantization -- 2.2 Neural Architecture Search -- 3 Preliminary -- 4 Branch-wise Activation-clipping Search Quantization -- 4.1 Search Space Design -- 4.2 Search Strategy -- 5 Block Structure for Low-bit Quantization -- 5.1 New Building Block -- 5.2 Flexconn: A Flexible Block Skip Connection for Fully Skip-Connected Layers -- 6 Experiments -- 6.1 Evaluation with MobileNet-v2 and MobileNet-v1 -- 6.2 Evaluation with ResNet-18 -- 6.3 Ablation Study -- 7 Conclusion -- References -- You Already Have It: A Generator-Free Low-Precision DNN Training Framework Using Stochastic Rounding -- 1 Introduction -- 2 Background -- 2.1 |
|
|
|
|