|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNISA996495164503316 |
|
|
Autore |
Andrejevic Nina |
|
|
Titolo |
Machine learning-augmented spectroscopies for intelligent materials design / / Nina Andrejevic |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Cham, Switzerland : , : Springer, , [2022] |
|
©2022 |
|
|
|
|
|
|
|
|
|
ISBN |
|
9783031148088 |
9783031148071 |
|
|
|
|
|
|
|
|
Descrizione fisica |
|
1 online resource (106 pages) |
|
|
|
|
|
|
Collana |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Machine learning |
Smart materials |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Nota di contenuto |
|
Intro -- Supervisor's Foreword -- Acknowledgments -- Parts of This Thesis Have Been Published in the Following Journal Articles and Preprints -- Contents -- 1 Introduction -- 1.1 Neutron and Photon Scattering and Spectroscopy -- 1.2 Integration of Machine Learning -- 1.3 Thesis Objectives -- References -- 2 Background -- 2.1 Neutron and Photon Scattering and Spectroscopy -- 2.1.1 Inelastic Neutron Scattering -- 2.1.2 Raman Spectroscopy -- 2.1.3 Polarized Neutron Reflectometry -- 2.1.4 X-ray Absorption Spectroscopy -- 2.2 Data-Driven Methods -- 2.2.1 Dimensionality Reduction -- Singular Value Decomposition -- Principal Component Analysis -- Non-negative Matrix Factorization -- 2.2.2 Machine Learning -- Support Vector Machines -- Neural Networks -- References -- 3 Data-Efficient Learning of Materials' Vibrational Properties -- 3.1 Introduction -- 3.2 Materials Data Representations -- 3.3 Euclidean Neural Networks -- 3.3.1 Graph Representation of Crystal Structures -- 3.3.2 Network Operations -- 3.4 Phonon DoS Prediction -- 3.4.1 Data Processing -- 3.4.2 Results -- 3.4.3 Comparison with Experiment -- 3.4.4 High-CV Materials Discovery -- 3.4.5 Partial Phonon Density of States -- 3.4.6 Alloys and Strained Compounds -- 3.5 Unsupervised Representation Learning of Vibrational Spectra -- 3.5.1 Dimensionality Reduction -- 3.5.2 Data Processing Methods -- 3.5.3 Results -- 3.6 Conclusion -- |
|
|
|
|