|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNISA996490360903316 |
|
|
Titolo |
Simulation and synthesis in medical imaging : 7th international workshop, SASHIMI 2022, held in conjunction with MICCAI 2022, Singapore, September 18, 2022 : proceedings / / Can Zhao [and three others] |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Cham, Switzerland : , : Springer International Publishing, , [2022] |
|
©2022 |
|
|
|
|
|
|
|
|
|
ISBN |
|
|
|
|
|
|
Descrizione fisica |
|
1 online resource (176 pages) |
|
|
|
|
|
|
Collana |
|
Lecture Notes in Computer Science Ser. ; ; v.13570 |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Diagnostic imaging - Data processing |
Diagnostic imaging - Digital techniques |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Nota di contenuto |
|
Intro -- Preface -- Organization -- Contents -- Subject-Specific Lesion Generation and Pseudo-Healthy Synthesis for Multiple Sclerosis Brain Images -- 1 Introduction -- 1.1 Related Works -- 1.2 Contributions -- 2 Methods -- 2.1 Generators -- 2.2 Discriminators -- 2.3 Losses -- 3 Experiments -- 3.1 Evaluation -- 3.2 Implementation -- 3.3 Data -- 3.4 Results -- 4 Conclusion -- References -- Generating Artificial Artifacts for Motion Artifact Detection in Chest CT -- 1 Introduction -- 2 Methods -- 3 Experiments -- 4 Results -- 5 Discussion -- References -- Probabilistic Image Diversification to Improve Segmentation in 3D Microscopy Image Data -- 1 Introduction -- 2 Probabilistic Image Diversification -- 3 Experiments and Results -- 3.1 Data Augmentation -- 3.2 Benchmarking -- 3.3 Test-Time Augmentation -- 4 Discussion and Conclusion -- References -- Pathology Synthesis of 3D Consistent Cardiac MR Images Using 2D VAEs and GANs -- 1 Introduction -- 1.1 Contributions -- 2 Method -- 2.1 Pathology Synthesis -- 2.2 Modeling Slice Relationship -- 2.3 Data and Implementation -- 3 Results -- 3.1 Pathology Synthesis -- 3.2 Modeling the Slice Relationship -- 4 Discussion and Conclusion -- References -- .26em plus .1em minus .1emHealthyGAN: Learning from Unannotated Medical Images to Detect Anomalies Associated with |
|
|
|
|