|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNISA996490355103316 |
|
|
Titolo |
Explainable and transparent AI and multi-agent systems : 4th international workshop, EXTRAAMAS 2022, virtual event, May 9-10, 2022, revised selected papers / / edited by Davide Calvaresi [and three others] |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Cham, Switzerland : , : Springer, , [2022] |
|
©2022 |
|
|
|
|
|
|
|
|
|
ISBN |
|
|
|
|
|
|
Descrizione fisica |
|
1 online resource (242 pages) |
|
|
|
|
|
|
Collana |
|
Lecture Notes in Computer Science ; ; v.13283 |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Intelligent agents (Computer software) |
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references and index. |
|
|
|
|
|
|
Nota di contenuto |
|
Intro -- Preface -- Organization -- Contents -- Explainable Machine Learning -- Evaluation of Importance Estimators in Deep Learning Classifiers for Computed Tomography -- 1 Introduction -- 2 Importance Estimators -- 3 Evaluation Methods -- 3.1 Model Accuracy per Input Feature Perturbation -- 3.2 Concordance Between Importance Scores and Segmentation -- 3.3 XRAI-Based Region-Wise Overlap Comparison -- 4 Results -- 4.1 Model Accuracy per Input Feature Perturbation -- 4.2 Concordance Between Importance Scores and Segmentation -- 4.3 XRAI-Based Region-Wise Overlap Comparison -- 5 Discussion -- References -- Integration of Local and Global Features Explanation with Global Rules Extraction and Generation Tools -- 1 Introduction -- 2 State of the Art -- 3 Methodology -- 4 Results and Analysis -- 4.1 S1 - ECLAIRE -- 4.2 S2 - ExpL and ECLAIRE -- 4.3 S3 - CIU and ECLAIRE -- 4.4 S4 - ExpL CIU and ECLAIRE -- 5 Discussion -- 6 Conclusions -- A Appendix Feature Description -- References -- ReCCoVER: Detecting Causal Confusion for Explainable Reinforcement Learning -- 1 Introduction -- 2 Related Work -- 2.1 Structural Causal Models (SCM) -- 2.2 Explainable Reinforcement Learning (XRL) -- 3 ReCCoVER -- 3.1 Extracting Critical States -- 3.2 Training Feature-Parametrized Policy -- 3.3 Generating Alternative Environments -- 3.4 Detecting Causal Confusion -- 4 Evaluation Scenarios and Settings -- 5 |
|
|
|
|