|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNISA996472066403316 |
|
|
Titolo |
Software quality, the next big thing in software engineering and quality : 14th international conference on software quality, SWQD 2022, Vienna, Austria, May 17-19, 2022 : proceedings / / edited by Daniel Mendez [and four others] |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Cham, Switzerland : , : Springer, , [2022] |
|
©2022 |
|
|
|
|
|
|
|
|
|
ISBN |
|
|
|
|
|
|
Descrizione fisica |
|
1 online resource (111 pages) |
|
|
|
|
|
|
Collana |
|
Lecture Notes in Business Information Processing ; ; v.439 |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Computer software - Development |
Computer software - Quality control |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references and index. |
|
|
|
|
|
|
Nota di contenuto |
|
Intro -- Message from the General Chair -- Message from the Scientific Program Chairs -- Organization -- Contents -- Invited Papers -- Continuous Software Engineering in the Wild -- 1 Introduction -- 2 Continuous Software Engineering in a Nutshell -- 3 Challenges and Future Needs -- 4 Conclusions -- References -- Motivations for and Benefits of Adopting the Test Maturity Model integration (TMMi) -- 1 Introduction -- 2 A Brief Overview of TMMi -- 3 Reasons (Motivations) for Adopting TMMi -- 4 Benefits of Adopting TMMi -- 5 Conclusion -- References -- AI in Software Engineering -- Automated Code Review Comment Classification to Improve Modern Code Reviews -- 1 Introduction -- 2 Related Work -- 3 CommentBERT - Classifying Code-Review Comments -- 3.1 Classifying Comments According to Their Focus -- 3.2 Training BERT for Code-Review Comments -- 3.3 Example of Application of the Taxonomy -- 4 Research Design -- 4.1 Research Questions -- 4.2 Datasets -- 4.3 Model Validation -- 5 Results -- 6 Discussion -- 7 Conclusions -- References -- A Preliminary Study on Using Text- and Image-Based Machine Learning to Predict Software Maintainability -- 1 Motivation -- 2 Experimental Design -- 2.1 Dataset -- 2.2 Architectures and Algorithms -- 2.3 Training and Evaluation -- 2.4 Preprocessing for Text-Based Prediction |
|
|
|
|