| |
|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNISANNIOBVEE016380 |
|
|
Autore |
Ovidius Naso, Publius |
|
|
Titolo |
ÂP. Ouidij Nasonis ÂMetamorphoseon libri 15. Raphaelis Regii Volaterrani luculentissima explanatio, cum nouis alterius viri eruditissimi, additionibus. Lactantii Placiti in singulas fabulas argumenta. Eruditissimorum virorum Coelii Rhodigini, Ioan. Baptistae Egnatii, Henrici Glareani, Giberti Longolii, & Iacobi Fanensis, in pleraque omnia loca difficiliora, annotationes. Omnia nunc postremo' a' multis erroribus, & mendis purgata, summaque cura excusa. Cum indice rerum memorabilium, ac fabularum omnium, .. |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Venetiis : apud Nicolaum Moretum, 1586 |
|
|
|
|
|
|
|
Titolo uniforme |
Metamorphoses |
|
|
|
|
|
Descrizione fisica |
|
\12!, 315, \5! p. : ill. ; 2º |
|
|
|
|
|
|
Collocazione |
|
BNSALA FARN.39. F 0004 |
BUZ.C. 0314 |
NCSOPPALCO F. A. 1. 106 |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
Riferimenti: EDIT16 CNCE 31201 |
Marca (Z570) sul front |
Cors. ; gr. ; rom |
Segn.: aâ¶, A-Vâ¸. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2. |
Record Nr. |
UNISA996472039103316 |
|
|
Autore |
Eshima Nobuoki |
|
|
Titolo |
An introduction to latent class analysis : methods and applications / / Nobuoki Eshima |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Singapore : , : Springer, , [2022] |
|
©2022 |
|
|
|
|
|
|
|
|
|
ISBN |
|
9789811909726 |
9789811909719 |
|
|
|
|
|
|
|
|
Descrizione fisica |
|
1 online resource (196 pages) |
|
|
|
|
|
|
Collana |
|
Behaviormetrics: Quantitative Approaches to Human Behavior ; ; v.14 |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Human behavior - Research |
Human behavior - Philosophy |
Variables aleatòries |
Conducta (Psicologia) |
Llibres electrònics |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Nota di contenuto |
|
Intro -- Preface -- References -- Acknowledgements -- Contents -- 1 Overview of Basic Latent Structure Models -- 1.1 Introduction -- 1.2 Latent Class Model -- 1.3 Latent Trait Model -- 1.4 Latent Profile Model -- 1.5 Factor Analysis Model -- 1.6 Latent Structure Models in a Generalized Linear Model Framework -- 1.7 The EM Algorithm and Latent Structure Models -- 1.8 Discussion -- References -- 2 Latent Class Cluster Analysis -- 2.1 Introduction -- 2.2 The ML Estimation of Parameters in the Latent Class Model -- 2.3 Examples -- 2.4 Measuring Goodness-of-Fit of Latent Class Models -- 2.5 Comparison of Latent Classes -- 2.6 Latent Profile Analysis -- 2.7 Discussion -- References -- 3 Latent Class Analysis with Ordered Latent Classes -- 3.1 Introduction -- 3.2 Latent Distance Analysis -- 3.3 Assessment of the Latent Guttman Scaling -- 3.4 Analysis of the Association Between Two Latent Traits with Latent Guttman Scaling -- 3.5 Latent Ordered-Class Analysis -- 3.6 The Latent Trait Model (Item Response Model) -- 3.7 Discussion -- References -- 4 Latent Class Analysis with Latent Binary Variables: An Application |
|
|
|
|
|
|
|
|
|
|
for Analyzing Learning Structures -- 4.1 Introduction -- 4.2 Latent Class Model for Scaling Skill Acquisition Patterns -- 4.3 ML Estimation Procedure for Model (4.3) with (4.4) -- 4.4 Numerical Examples (Exploratory Analysis) -- 4.5 Dynamic Interpretation of Learning (Skill Acquisition) Structures -- 4.6 Estimation of Mixed Proportions of Learning Processes -- 4.7 Solution of the Separating Equations -- 4.8 Path Analysis in Learning Structures -- 4.9 Numerical Illustration (Confirmatory Analysis) -- 4.10 A Method for Ordering Skill Acquisition Patterns -- 4.11 Discussion -- References -- 5 The Latent Markov Chain Model -- 5.1 Introduction -- 5.2 The Latent Markov Chain Model -- 5.3 The ML Estimation of the Latent Markov Chain Model. |
5.4 A Property of the ML Estimation Procedure via the EM Algorithm -- 5.5 Numerical Example I -- 5.6 Numerical Example II -- 5.7 A Latent Markov Chain Model with Missing Manifest Observations -- 5.8 A General Version of the Latent Markov Chain Model with Missing Manifest Observations -- 5.9 The Latent Markov Process Model -- 5.10 Discussion -- References -- 6 The Mixed Latent Markov Chain Model -- 6.1 Introduction -- 6.2 Dynamic Latent Class Models -- 6.3 The ML Estimation of the Parameters of Dynamic Latent Class Models -- 6.4 A Numerical Illustration -- 6.5 Discussion -- References -- 7 Path Analysis in Latent Class Models -- 7.1 Introduction -- 7.2 A Multiple-Indicator, Multiple-Cause Model -- 7.3 An Entropy-Based Path Analysis of Categorical Variables -- 7.4 Path Analysis in Multiple-Indicator, Multiple-Cause Models -- 7.4.1 The Multiple-Indicator, Multiple-Cause Model in Fig. 7.2a -- 7.4.2 The Multiple-Indicator, Multiple-Cause Model in Fig. 7.2b -- 7.5 Numerical Illustration I -- 7.5.1 Model I (Fig. 7.2a) -- 7.5.2 Model II (Fig. 7.2b) -- 7.6 Path Analysis of the Latent Markov Chain Model -- 7.7 Numerical Illustration II -- 7.8 Discussion -- References. |
|
|
|
|
|
| |