| |
|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNISA996472038103316 |
|
|
Autore |
Benedek Csaba |
|
|
Titolo |
Multi-level Bayesian models for environment perception / / Csaba Benedek |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Cham, Switzerland : , : Springer, , [2022] |
|
©2022 |
|
|
|
|
|
|
|
|
|
ISBN |
|
9783030836542 |
9783030836535 |
|
|
|
|
|
|
|
|
Descrizione fisica |
|
1 online resource (208 pages) |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Markov processes |
Bayesian statistical decision theory |
Reconeixement de formes (Informàtica) |
Visió per ordinador |
Models matemàtics |
Processos de Markov |
Estadística bayesiana |
Llibres electrònics |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references and index. |
|
|
|
|
|
|
Nota di contenuto |
|
Intro -- Acknowledgements -- Contents -- Acronyms and Notations -- Abbreviations and Concepts -- General Notations Used in the Book -- Specific Notations Used in MRF/CXM Models -- Specific Notations Used in MPP Models -- 1 Introduction -- 2 Fundamentals -- 2.1 Measurement Representation and Problem Formulations -- 2.2 Markovian Classification Models -- 2.2.1 Markov Random Fields, Gibbs Potentials, and Observation Processes -- 2.2.2 Bayesian Labeling Approach and the Potts Model -- 2.2.3 MRF-Based Image Segmentation -- 2.2.4 MRF Optimization -- 2.2.5 Mixed Markov Models -- 2.3 Object Population Extraction with Marked Point Processes -- 2.3.1 Definition of Marked Point Processes -- 2.3.2 MPP Energy Functions -- 2.3.3 MPP Optimization -- 2.4 Methodological Contributions of the Book -- 3 Bayesian Models for Dynamic Scene Analysis -- 3.1 Dynamic |
|
|
|
|
|
|
|
|
|
|
Scene Perception -- 3.2 Foreground Extraction in Video Sequences -- 3.2.1 Related Work in Video-Based Foreground Detection -- 3.2.2 MRF Model for Foreground Extraction -- 3.2.3 Probabilistic Model of the Background and Shadow Processes -- 3.2.4 Microstructural Features -- 3.2.5 Foreground Probabilities -- 3.2.6 Parameter Settings -- 3.2.7 MRF Optimization -- 3.2.8 Results -- 3.2.9 Summary and Applications of Foreground Segmentation -- 3.3 People Localization in Multi-camera Systems -- 3.3.1 A New Approach on Multi-view People Localization -- 3.3.2 Silhouette-Based Feature Extraction -- 3.3.3 3D Marked Point Process Model -- 3.3.4 Evaluation of Multi-camera People Localization -- 3.3.5 Applications and Alternative Ways of 3D Person Localization -- 3.4 Foreground Extraction in Lidar Point Cloud Sequences -- 3.4.1 Problem Formulation and Data Mapping -- 3.4.2 Background Model -- 3.4.3 DMRF Approach on Foreground Segmentation -- 3.4.4 Evaluation of DMRF-Based Foreground-Background Separation. |
3.4.5 Application of the DMFR Method for Person and Activity Recognition -- 3.5 Conclusions -- 4 Multi-layer Label Fusion Models -- 4.1 Markovian Fusion Models in Computer Vision -- 4.2 A Label Fusion Model for Object Motion Detection -- 4.2.1 2D Image Registration -- 4.2.2 Change Detection with 3D Approach -- 4.2.3 Feature Selection -- 4.2.4 Multi-layer Segmentation Model -- 4.2.5 L3Mrf Optimization -- 4.2.6 Experiments on Object Motion Detection -- 4.3 Long-Term Change Detection in Aerial Photos -- 4.3.1 Image Model and Feature Extraction -- 4.3.2 A Conditional Mixed Markov Image Segmentation Model -- 4.3.3 Experiments on Long-Term Change Detection -- 4.4 Parameter Settings in Multi-layer Segmentation Models -- 4.5 Conclusions -- 5 Multitemporal Data Analysis with Marked Point Processes -- 5.1 Introducing the Time Dimension in MPP Models -- 5.2 Object-Level Change Detection -- 5.2.1 Building Development Monitoring-Problem Definition -- 5.2.2 Feature Selection -- 5.2.3 Multitemporal MPP Configuration Model and Optimization -- 5.2.4 Experimental Study of the mMPP Model -- 5.3 A Point Process Model for Target Sequence Analysis -- 5.3.1 Application on Moving Target Analysis in ISAR Image Sequences -- 5.3.2 Problem Definition and Notations -- 5.3.3 Data Preprocessing in a Bottom-Up Approach -- 5.3.4 Multiframe Marked Point Process Model -- 5.3.5 Multiframe MPP Optimization -- 5.3.6 Experimental Results on Target Sequence Analysis -- 5.4 Parameter Settings in Dynamic MPP Models -- 5.5 Conclusions -- 6 Multi-level Object Population Analysis with an Embedded MPP Model -- 6.1 A Hierarchical MPP Approach -- 6.2 Problem Formulation and Notations -- 6.3 EMPP Energy Model -- 6.4 Multi-level MPP Optimization -- 6.5 Applications of the EMPP Model -- 6.5.1 Built-in Area Analysis in Aerial and Satellite Images -- 6.5.2 Traffic Monitoring-Based on Lidar Data. |
6.5.3 Automatic Optical Inspection of Printed Circuit Boards -- 6.6 Implementation Details -- 6.7 Quantitative Evaluation Framework -- 6.7.1 EMPP Benchmark Database -- 6.7.2 Quantitative Evaluation Methodology -- 6.8 Experimental Results -- 6.8.1 EMPP Versus an Ensemble of Single Layer MPPs -- 6.8.2 Application Level Comparison to Non-MPP-Based Techniques -- 6.8.3 Effects on Data Term Parameter Settings -- 6.8.4 Computational Time -- 6.8.5 Experiment Repeatability -- 6.9 Conclusion -- 7 Concluding Remarks -- Appendix References -- -- Index. |
|
|
|
|
|
|
|
|
|
|
|
|
|
2. |
Record Nr. |
UNINA9910857095803321 |
|
|
Autore |
Sessa, Ernesto |
|
|
Titolo |
Della canapa e del lino in Italia / Ernesto Sessa |
|
|
|
|
|
Pubbl/distr/stampa |
|
|
|
|
|
|
Descrizione fisica |
|
251 p., [175] c. di tav. : ill. ; 25 cm |
|
|
|
|
|
|
Collana |
|
Pubblicazioni / Federazione nazionale fascista delle industrie tessili varie ; 2 |
|
|
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Locazione |
|
|
|
|
|
|
Collocazione |
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
| |