3.8 Rotating Neutron Stars, Moment of Inertia and Quadrupole Moment -- 3.8.1 Slowly Rotating Neutron Stars -- 3.8.2 Fully Relativistic, Nonlinear Models of Rapidly Rotating Neutron Stars -- 3.9 Neutron Star Matter in Strongly Quantizing Magnetic Fields -- 3.9.1 Magnetized Neutron Star Crusts -- 3.9.2 Dense Matter in Strong Magnetic Fields -- 3.10 EoS Tables for Supernova and Binary Neutron Star Merger Simulations -- Appendix 1 -- References -- 4 Binary Neutron Star Mergers -- 4.1 Gravitational Waves as New Window into Neutron Stars -- 4.2 First Binary Neutron Star Merger GW170817 and Multimessenger Astrophysics -- 4.3 Tidal Deformability, Love Number, and EoS -- 4.4 I-Love-Q Universal Relations -- 4.5 Inspiral Phase of BNS Merger, Tidal Deformability, and Cold EoS -- 4.6 Neutron Star Radius Determination from Tidal Deformability -- 4.7 Hot and Neutrino-Trapped Merger Remnants and Finite Temperature EoSs -- 4.7.1 Fate of BNS Merger Remnants -- 4.7.2 Upper Bound on Maximum Mass of Neutron Stars from GW170817 -- 4.7.3 Finite Temperature EoSs and Imprints of Exotic Matter in GW Signals -- References -- 5 Synthesis of Heavy Elements in the Universe -- 5.1 Different Modes of Nucleosynthesis: The s-, the r-, and the p-Processes -- 5.1.1 The s-Process -- 5.1.2 The r-Process -- 5.1.3 The p-Process -- 5.2 Conditions for Production of Elements by the r-Process and the Sites -- 5.2.1 The Waiting-Point Nuclei -- 5.2.2 Fission Cycling -- 5.2.3 Freeze-Out -- 5.2.4 Conditions Needed for the r-Process -- 5.2.5 The Collapse of Massive Stars as Site for the r-Process -- 5.2.6 Neutron Star-Neutron Star/Black Hole Merger as Site for the r-Process -- 5.3 Inputs for Nuclear Modelling of the r-Process -- 5.3.1 Nuclear Masses/Binding Energies -- 5.3.2 Beta Decay Rates -- 5.3.3 Neutron Capture Rates. |