| |
|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNISA996466752003316 |
|
|
Autore |
Kimura Taro |
|
|
Titolo |
Instanton counting, quantum geometry and algebra / / Taro Kimura |
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Cham, Switzerland : , : Springer, , [2021] |
|
©2021 |
|
|
|
|
|
|
|
|
|
ISBN |
|
|
|
|
|
|
Descrizione fisica |
|
1 online resource (297 pages) |
|
|
|
|
|
|
Collana |
|
Mathematical physics studies |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references and index. |
|
|
|
|
|
|
Nota di contenuto |
|
Intro -- Preface -- Gauge Theory in Physics and Mathematics -- Universality of QFT -- mathcalN=2 Supersymmetry -- Instanton Counting -- Seiberg-Witten Theory -- Relation to Integrable System -- Quantization of Geometry -- Quantum Algebraic Structure -- Quiver W-algebra -- References -- Acknowledgements -- Contents -- Part I Instanton Counting -- 1 Instanton Counting and Localization -- 1.1 Yang-Mills Theory -- 1.2 Instanton -- 1.3 Summing up Instantons -- 1.3.1 θ-Term -- 1.3.2 Topological Twist -- 1.4 ADHM Construction of Instantons -- 1.4.1 ADHM Equation -- 1.4.2 Constructing Instanton -- 1.4.3 Dirac Zero Mode -- 1.4.4 String Theory Perspective -- 1.5 Instanton Moduli Space -- 1.5.1 Compactification and Resolution -- 1.5.2 Stability Condition -- 1.6 Equivariant Localization of Instanton Moduli Space -- 1.6.1 Equivariant Cohomology -- 1.6.2 Equivariant Localization -- 1.6.3 Equivariant Action and Fixed Point Analysis -- 1.7 Integrating ADHM Variables -- 1.7.1 Path Integral Formalism -- 1.7.2 Contour Integral Formula -- 1.7.3 Incorporating Matter -- 1.7.4 Pole Analysis -- 1.8 Equivariant Index Formula -- 1.8.1 Spacetime Bundle -- 1.8.2 Framing and Instanton Bundles -- 1.8.3 Universal Bundle -- 1.8.4 Index Formula -- 1.8.5 Vector Multiplet -- 1.8.6 Fundamental and Antifundamental Matters -- 1.8.7 Adjoint Matter -- 1.9 Instanton Partition Function -- 1.9.1 Vector Multiplet -- 1.9.2 Fundamental and Antifundamental Matters -- 1.9.3 Adjoint Matter -- 1.9.4 Chern-Simons Term -- 1.9.5 Relation to the Contour Integral Formula -- References -- 2 Quiver Gauge Theory -- 2.1 Instanton Moduli Space -- |
|
|
|
|
|
|
|
|
|
2.1.1 Vector Bundles on the Moduli Space -- 2.1.2 Equivariant Fixed Point and Observables -- 2.2 Instanton Partition Function -- 2.2.1 Equivariant Index Formula -- 2.2.2 Contour Integral Formula -- 2.2.3 Quiver Cartan Matrix -- 2.3 Quiver Variety. |
2.3.1 ADHM Quiver -- 2.3.2 ADHM on ALE Space -- 2.3.3 Gauge Origami -- 2.4 Fractional Quiver Gauge Theory -- 2.4.1 Instanton Moduli Space -- 2.4.2 Instanton Partition Function -- References -- 3 Supergroup Gauge Theory -- 3.1 Supergroup Yang-Mills Theory -- 3.1.1 Supervector Space, Superalgebra, and Supergroup -- 3.1.2 Yang-Mills Theory -- 3.1.3 Quiver Gauge Theory Description -- 3.2 Decoupling Trick -- 3.2.1 Vector Multiplet -- 3.2.2 Bifundamental Hypermultiplet -- 3.2.3 Dp Quiver -- 3.2.4 Affine A0 quiver -- 3.3 ADHM Construction of Super Instanton -- 3.3.1 ADHM Data -- 3.3.2 Constructing Instanton -- 3.3.3 String Theory Perspective -- 3.3.4 Instanton Moduli Space -- 3.4 Equivariant Localization -- 3.4.1 Framing and Instanton Bundles -- 3.4.2 Observable Bundles -- 3.4.3 Equivariant Index Formula -- 3.4.4 Instanton Partition Function -- 3.4.5 Contour Integral Formula -- References -- Part II Quantum Geometry -- 4 Seiberg-Witten Geometry -- 4.1 mathcalN = 2 Gauge Theory in Four Dimensions -- 4.1.1 Supersymmetric Vacua -- 4.1.2 Low Energy Effective Theory -- 4.1.3 BPS Spectrum -- 4.2 Seiberg-Witten Theory -- 4.2.1 Renormalization Group Analysis -- 4.2.2 One-Loop Exactness -- 4.2.3 SU(2) Theory -- 4.2.4 SU(n) Theory -- 4.2.5 mathcalN = 2 SQCD -- 4.3 Quiver Gauge Theory -- 4.3.1 A1 Quiver -- 4.3.2 A2 Quiver -- 4.3.3 A3 Quiver -- 4.3.4 Generic Quiver -- 4.4 Supergroup Gauge Theory -- 4.5 Brane Dynamics and mathcalN = 2 Gauge Theory -- 4.5.1 Hanany-Witten Construction -- 4.5.2 Seiberg-Witten Curve from M-Theory -- 4.5.3 Quiver Gauge Theory -- 4.5.4 Higgsing and Vortices -- 4.5.5 Higgsing in Seiberg-Witten Geometry -- 4.5.6 Supergroup Gauge Theory -- 4.6 Eight Supercharge Theory in Higher Dimensions -- 4.6.1 5d mathcalN = 1 Theory -- 4.6.2 6d mathcalN = (1,0) Theory -- References -- 5 Quantization of Geometry. |
5.1 Non-perturbative Schwinger-Dyson Equation -- 5.1.1 Add/remove Instantons -- 5.2 qq-Character -- 5.2.1 iWeyl Reflection -- 5.2.2 Supergroup Gauge Theory -- 5.2.3 Higher Weight Current -- 5.2.4 Collision Limit -- 5.3 Classical Limit -- 5.3.1 (Very) Classical Limit: ε1,2 to0 -- 5.3.2 Nekrasov-Shatashvili Limit: ε2 to0 -- 5.4 Examples -- 5.4.1 A1 Quiver -- 5.4.2 A2 Quiver -- 5.4.3 Affine A0 quiver -- 5.5 Gauge Origami Reloaded -- 5.5.1 8d Gauge Origami Partition Function -- 5.5.2 qq-Character Integral Formula -- 5.6 Quantization of Cycle Integrals -- 5.6.1 Saddle Point Equation -- 5.6.2 Y-Function -- 5.7 Quantum Geometry and Quantum Integrability -- 5.7.1 Pure SU(n) Yang-Mills Theory -- 5.7.2 mathcalN = 2 SQCD -- 5.7.3 A2 Quiver -- 5.7.4 Ap Quiver -- 5.8 Bethe Equation -- 5.8.1 Saddle Point Equation -- 5.8.2 Higgsing and Truncation -- 5.8.3 Dimensional Hierarchy: Periodicity of Spectral Parameter -- References -- Part III Quantum Algebra -- 6 Operator Formalism of Gauge Theory -- 6.1 Holomorphic Deformation -- 6.1.1 Free Field Realization -- 6.2 Z-state -- 6.2.1 Screening Current -- 6.2.2 Instanton Sum and Screening Charge -- 6.2.3 V-operator: Fundamental Matter -- 6.2.4 Boundary Degrees of Freedom -- 6.2.5 Y-Operator: Observable Generator -- 6.2.6 A-operator: iWeyl Reflection Generator -- 6.3 Pole Cancellation Mechanism -- References -- 7 Quiver W-Algebra -- 7.1 T-Operator: Generating Current -- 7.2 Classical Limit: Quantum Integrability -- 7.3 Examples -- 7.3.1 A1 Quiver -- 7.3.2 A2 Quiver -- 7.3.3 Ap Quiver -- 7.3.4 Dp Quiver -- 7.4 Fractional Quiver W-Algebra -- 7.4.1 Screening Current -- 7.4.2 Y-Operator -- 7.4.3 A-Operator -- 7.4.4 iWeyl Reflection -- 7.4.5 T-operator: Generating Current -- 7.4.6 BC2 Quiver |
|
|
|
|
|
|
|
|
-- 7.4.7 Bp Quiver -- 7.4.8 Cp Quiver -- 7.4.9 G2 Quiver -- 7.4.10 NS1,2 Limit -- 7.5 Affine Quiver W-Algebra -- 7.5.1 Affine A0 quiver. |
7.5.2 Affine Ap-1 quiver -- 7.6 Integrating over Quiver Variety -- 7.6.1 Instanton Partition Function -- 7.6.2 qq-Character -- References -- 8 Quiver Elliptic W-Algebra -- 8.1 Operator Formalism -- 8.1.1 Doubled Fock Space -- 8.1.2 Screening Current -- 8.1.3 Z-State -- 8.2 Trace Formula -- 8.2.1 Coherent State Basis -- 8.2.2 Torus Correlation Function -- 8.2.3 Connection to Elliptic Quantum Group -- 8.3 More on Elliptic Vertex Operators -- 8.3.1 V-Operator -- 8.3.2 Y-Operator -- 8.3.3 A-Operator -- 8.4 T-Operator -- 8.4.1 A1 Quiver -- 8.4.2 A2 Quiver -- References -- Appendix A Special Functions -- A.1 Gamma Functions -- A.1.1 Reflection Formula -- A.1.2 Multiple Sine Function -- A.2 q-Functions -- A.2.1 q-Shifted Factorial -- A.2.2 Quantum Dilogarithm -- A.2.3 q-Gamma Functions -- A.2.4 Partition Sum -- A.3 Elliptic Functions -- A.3.1 Theta Function -- A.3.2 Elliptic Gamma Functions -- A.3.3 Elliptic Analog of Polylogarithm -- Appendix B Combinatorial Calculus -- B.1 Partition -- B.2 Instanton Calculus -- B.2.1 U(n) Theory -- B.2.2 U(n0|n1) Theory -- Appendix C Matrix Model -- C.1 Matrix Integral -- C.1.1 Eigenvalue Integral Representation -- C.2 Saddle Point Analysis -- C.2.1 Eigenvalue Density Function -- C.2.2 Functional Representation -- C.3 Spectral Curve -- C.3.1 Cycle Integrals -- C.4 Quantum Geometry -- C.4.1 Baker-Akhiezer Function -- C.4.2 Quantization of the Cycle -- C.5 Quantum Algebra -- C.5.1 Loop Equation -- C.5.2 Operator Formalism -- C.5.3 Gauge Theory Parameter -- C.5.4 Vertex Operators -- C.5.5 Z-State -- Index. |
|
|
|
|
|
| |