1.

Record Nr.

UNISA996466704603316

Titolo

Rugged free energy landscapes : common computational approaches in spin glasses, structural glasses, and biological macromolecules / / edited by W. Janke

Pubbl/distr/stampa

Berlin, Germany ; ; New York, New York : , : Springer, , [2008]

©2008

ISBN

3-540-74029-5

Edizione

[1st ed. 2008.]

Descrizione fisica

1 online resource (X, 412 p.)

Collana

Lecture Notes in Physics, , 0075-8450 ; ; 736

Disciplina

530.413

Soggetti

Spin glasses - Mathematical models

Condensed matter - Mathematical models

Protein folding - Mathematical models

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Bibliographic Level Mode of Issuance: Monograph

Nota di bibliografia

Includes bibliographical references and index.

Nota di contenuto

Rugged Free-Energy Landscapes – An Introduction -- Rugged Free-Energy Landscapes – An Introduction -- Spin Glasses -- Some Aspects of Infinite-Range Models of Spin Glasses: Theory and Numerical Simulations -- The Potts Glass Model: A Scenario for the Freezing Transition of Structural Glasses? -- Domain Walls, Droplets and Barriers in Two-Dimensional Ising Spin Glasses -- Local Scale-Invariance in Disordered Systems -- Structural Glasses -- Transport of Mobile Particles in an Immobile Environment: Computer Simulations of Sodium Silicates -- The Gonihedric Ising Model and Glassiness -- Protein Folding -- Thermodynamics of Protein Folding from Coarse-Grained Models’ Perspectives -- Exact Energy Landscapes of Proteins Using a Coarse-Grained Model -- Protein Folding, Unfolding and Aggregation Studied Using an All-Atom Model with~a~Simplified Interaction Potential -- All-Atom Simulations of Proteins -- Algorithmic Developments -- Markov Chain Monte Carlo Methods for Simulations of Biomolecules -- A Different Approach to Monte Carlo Simulations in Systems with Complex Free-Energy Landscapes -- Generalized-Ensemble Algorithms for Protein Folding Simulations.

Sommario/riassunto

This collection of lectures and tutorial reviews by renowned experts



focusses on the common computational approaches in use to unravel the static and dynamical behaviour of complex physical systems at the interface of physics, chemistry and biology. Paradigmatic examples of condensed matter physics are spin and structural glasses and protein folding, as well as their aggregation and adsorption to hard and soft surfaces, in physico-chemical biology. Among the most prominent joint key features of the systems considered in this volume are rugged free-energy landscapes. These generate metastability and are often responsible for very slow dynamics allowing for the system to be trapped in one of the many available local minima. The challenge set forth by the authors of this volume is to provide a common basis and technical language for the (computational) technology transfer between the fields and systems considered.