1.

Record Nr.

UNISA996466671503316

Autore

Shi Zhan

Titolo

Branching Random Walks [[electronic resource] ] : École d'Été de Probabilités de Saint-Flour XLII – 2012 / / by Zhan Shi

Pubbl/distr/stampa

Cham : , : Springer International Publishing : , : Imprint : Springer, , 2015

ISBN

3-319-25372-7

Edizione

[1st ed. 2015.]

Descrizione fisica

1 online resource (X, 133 p. 8 illus., 6 illus. in color.)

Collana

École d'Été de Probabilités de Saint-Flour, , 0721-5363 ; ; 2151

Disciplina

519.282

Soggetti

Probabilities

Probability Theory and Stochastic Processes

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Bibliographic Level Mode of Issuance: Monograph

Nota di contenuto

I Introduction -- II Galton–Watson trees -- III Branching random walks and martingales -- IV The spinal decomposition theorem -- V Applications of the spinal decomposition theorem -- VI Branching random walks with selection -- VII Biased random walks on Galton–Watson trees -- A Sums of i.i.d. random variables -- References.

Sommario/riassunto

Providing an elementary introduction to branching random walks, the main focus of these lecture notes is on the asymptotic properties of one-dimensional discrete-time supercritical branching random walks, and in particular, on extreme positions in each generation, as well as the evolution of these positions over time. Starting with the simple case of Galton-Watson trees, the text primarily concentrates on exploiting, in various contexts, the spinal structure of branching random walks. The notes end with some applications to biased random walks on trees.     .