|
|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNISA996466667103316 |
|
|
Titolo |
Arithmetic algebraic geometry : lectures given at the 2nd session of the Centro Internazionale Matematico Estivo (C. I. M. E. ) held in Trento, Italy, June 24-July 2 1991 / / Edoardo Ballico [and three others], editors |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Berlin ; ; Heidelberg : , : Springer-Verlag, , [1993] |
|
©1993 |
|
|
|
|
|
|
|
|
|
ISBN |
|
|
|
|
|
|
Edizione |
[1st ed. 1993.] |
|
|
|
|
|
Descrizione fisica |
|
1 online resource (X, 226 p.) |
|
|
|
|
|
|
Collana |
|
Lecture Notes in Mathematics ; ; Volume 1553 |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
Bibliographic Level Mode of Issuance: Monograph |
|
|
|
|
|
|
Nota di contenuto |
|
Cycles algébriques de torsion et K-théorie algébrique Cours au C.I.M.E., juin 1991 -- Lectures on the approach to Iwasawa theory for Hasse-Weil L-functions via BdR. Part I -- Applications of arithmetic algebraic geometry to diophantine approximations -- Arithmetic algebraic geometry, Trento, Italy 1991. |
|
|
|
|
|
|
|
|
Sommario/riassunto |
|
This volume contains three long lecture series by J.L. Colliot-Thelene, Kazuya Kato and P. Vojta. Their topics are respectively the connection between algebraic K-theory and the torsion algebraic cycles on an algebraic variety, a new approach to Iwasawa theory for Hasse-Weil L-function, and the applications of arithemetic geometry to Diophantine approximation. They contain many new results at a very advanced level, but also surveys of the state of the art on the subject with complete, detailed profs and a lot of background. Hence they can be useful to readers with very different background and experience. CONTENTS: J.L. Colliot-Thelene: Cycles algebriques de torsion et K-theorie algebrique.- K. Kato: Lectures on the approach to Iwasawa theory for Hasse-Weil L-functions.- P. Vojta: Applications of arithmetic algebraic geometry to diophantine approximations. |
|
|
|
|
|
|
|
| |