|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNISA996466660203316 |
|
|
Autore |
Mumford David <1937-> |
|
|
Titolo |
The red book of varieties and schemes / / David Mumford |
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Berlin ; ; Heidelberg : , : Springer-Verlag, , [1988] |
|
©1988 |
|
|
|
|
|
|
|
|
|
ISBN |
|
|
|
|
|
|
Edizione |
[1st ed. 1988.] |
|
|
|
|
|
Descrizione fisica |
|
1 online resource (V, 315 p. 13 illus.) |
|
|
|
|
|
|
Collana |
|
Lecture Notes in Mathematics, , 0075-8434 ; ; 1358 |
|
|
|
|
|
|
Classificazione |
|
14A10 |
14A15 |
14H10 |
14Kxx |
14Fxx |
14Lxx |
|
|
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
Bibliographic Level Mode of Issuance: Monograph |
|
|
|
|
|
|
Nota di contenuto |
|
Varieties -- Some algebra -- Irreducible algebraic sets -- Definition of a morphism: I -- Sheaves and affine varieties -- Definition of prevarieties and morphism -- Products and the Hausdorff Axiom -- Dimension -- The fibres of a morphism -- Complete varieties -- Complex varieties -- Preschemes -- Spec (R) -- The category of preschemes -- Varieties are preschemes -- Fields of definition -- Closed subpreschemes -- The functor of points of a prescheme -- Proper morphisms and finite morphisms -- Specialization -- Local Properties of Schemes -- Quasi-coherent modules -- Coherent modules -- Tangent cones -- Non-singularity and differentials -- Étale morphisms -- Uniformizing parameters -- Non-singularity and the UFD property -- Normal varieties and normalization -- Zariski’s Main Theorem -- Flat and smooth morphisms. |
|
|
|
|
|
|
|
|
Sommario/riassunto |
|
"The book under review is a reprint of Mumford's famous Harvard lecture notes, widely used by the few past generations of algebraic geometers. Springer-Verlag has done the mathematical community a service by making these notes available once again.... The informal style and frequency of examples make the book an excellent text." |
|
|
|
|