1.

Record Nr.

UNISA996466641103316

Autore

Kirschner Tim

Titolo

Period Mappings with Applications to Symplectic Complex Spaces [[electronic resource] /] / by Tim Kirschner

Pubbl/distr/stampa

Cham : , : Springer International Publishing : , : Imprint : Springer, , 2015

ISBN

3-319-17521-1

Edizione

[1st ed. 2015.]

Descrizione fisica

1 online resource (XVIII, 275 p.)

Collana

Lecture Notes in Mathematics, , 0075-8434 ; ; 2140

Disciplina

512.788

Soggetti

Algebraic geometry

Functions of complex variables

Category theory (Mathematics)

Homological algebra

Algebraic Geometry

Several Complex Variables and Analytic Spaces

Category Theory, Homological Algebra

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Bibliographic Level Mode of Issuance: Monograph

Nota di contenuto

Intro -- Preface -- Contents -- Notation -- Chapter 1 Period Mappings for Families of Complex Manifolds -- 1.1 Introduction -- 1.2 The Λp Construction -- 1.3 Locally Split Exact Triples and Their Extension Classes -- 1.4 Connecting Homomorphisms -- 1.5 Frameworks for the Gauß-Manin Connection -- 1.6 The Gauß-Manin Connection -- 1.7 Generalities on Period Mappings -- 1.8 Period Mappings of Hodge-de Rham Type -- References -- Chapter 2 Degeneration of the Frölicher Spectral Sequence -- 2.1 Problem Description -- 2.2 Coherence of Direct Image Sheaves -- 2.3 The Infinitesimal Lifting of the Degeneration -- 2.4 Comparison of Formal and Ordinary Direct Image Sheaves -- 2.5 Compactifiable Submersive Morphisms -- References -- Chapter 3 Symplectic Complex Spaces -- 3.1 Symplectic Structures on Complex Spaces -- 3.2 The Beauville-Bogomolov Form -- 3.3 Deformation Theory of Symplectic Complex Spaces -- 3.4 The Local Torelli Theorem -- 3.5 The Fujiki Relation -- References -- Appendix A Foundations and Conventions -- A.1 Set Theory -- A.2 Category



Theory -- A.3 Homological Algebra -- A.4 Sheaves -- A.5 Ringed Spaces -- A.6 Multilinear Algebra -- A.7 Complex Spaces -- References -- Appendix B Tools -- B.1 Base Change Maps -- B.2 Hodge Theory of Rational Singularities -- References -- Terminology.

Sommario/riassunto

Extending Griffiths’ classical theory of period mappings for compact Kähler manifolds, this book develops and applies a theory of period mappings of “Hodge-de Rham type” for families of open complex manifolds. The text consists of three parts. The first part develops the theory. The second part investigates the degeneration behavior of the relative Frölicher spectral sequence associated to a submersive morphism of complex manifolds. The third part applies the preceding material to the study of irreducible symplectic complex spaces. The latter notion generalizes the idea of an irreducible symplectic manifold, dubbed an irreducible hyperkähler manifold in differential geometry, to possibly singular spaces. The three parts of the work are of independent interest, but intertwine nicely.