|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNISA996466635503316 |
|
|
Autore |
Mahler Kurt |
|
|
Titolo |
Lectures on transcendental numbers / / K. Mahler ; edited and compiled by B. Diviš and W. J. Le Veque |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Berlin ; ; Heidelberg ; ; New York : , : Springer-Verlag, , [1976] |
|
©1976 |
|
|
|
|
|
|
|
|
|
ISBN |
|
|
|
|
|
|
Edizione |
[1st ed. 1976.] |
|
|
|
|
|
Descrizione fisica |
|
1 online resource (XXI, 254 p.) |
|
|
|
|
|
|
Collana |
|
Lecture notes in mathematics ; ; 546 |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Transcendental numbers |
Number theory |
Differential equations, Linear |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
Bibliographic Level Mode of Issuance: Monograph |
|
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references. |
|
|
|
|
|
|
Nota di contenuto |
|
Existence and first properties of transcendental numbers -- Convergent laurent series and formal laurent series -- First results on the values of analytic functions at algebraic points -- Linear differential equations: The lemmas of Shidlovski -- Linear differential equations: A lower bound for the rank of the values of finitely many siegel E-functions at algebraic points -- Linear differential equations: Shidlovski's theorems on the transcendency and algebraic independence of values of siegel E-functions -- Applications of Shidlovski's main theorems to special functions -- Formal power series as solutions of algebraic differential equations. |
|
|
|
|
|
|
|