1.

Record Nr.

UNISA996466615503316

Autore

Cerf Raphaël

Titolo

The wulff crystal in ising and percolation models : Ecole d'Eté de Probabilités de Saint-Flour XXXIV - 2004 / / Raphaël Cerf, edited by Jean Picard

Pubbl/distr/stampa

Germany : , : Springer, , [2006]

©2006

ISBN

1-280-61834-5

9786610618347

3-540-34806-9

Edizione

[1st ed. 2006.]

Descrizione fisica

1 online resource (266 p.)

Collana

École d'Été de Probabilités de Saint-Flour, , 0721-5363 ; ; 1878

Disciplina

530.13

Soggetti

Phase transformations (Statistical physics)

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Description based upon print version of record.

Nota di bibliografia

Includes bibliographical references and index.

Nota di contenuto

Phase coexistence and subadditivity -- Presentation of the models -- Ising model -- Bernoulli percolation -- FK or random cluster model -- Main results -- The Wulff crystal -- Large deviation principles -- Large deviation theory -- Surface large deviation principles -- Volume large deviations -- Fundamental probabilistic estimates -- Coarse graining -- Decoupling -- Surface tension -- Interface estimate -- Basic geometric tools -- Sets of finite perimeter -- Surface energy -- The Wulff theorem -- Final steps of the proofs -- LDP for the cluster shapes -- Enhanced upper bound -- LDP for FK percolation -- LDP for Ising.

Sommario/riassunto

This volume is a synopsis of recent works aiming at a mathematically rigorous justification of the phase coexistence phenomenon, starting from a microscopic model. It is intended to be self-contained. Those proofs that can be found only in research papers have been included, whereas results for which the proofs can be found in classical textbooks are only quoted.