1.

Record Nr.

UNINA990008553190403321

Autore

Noorda, Bob

Titolo

Ricerca e progettazione di un simbolo / Bob Noorda, Roberto Sambonet, Pino Tovaglia ; a cura di Pietro Gasperini

Pubbl/distr/stampa

Bologna : Zanichelli, c1977

Descrizione fisica

79 p. : ill. ; 25 cm

Collana

Quaderni di design ; 3

Altri autori (Persone)

Sambonet, Roberto

Tovaglia, Pino

Disciplina

929.8

Locazione

DCATA

Collocazione

210015

Lingua di pubblicazione

Italiano

Formato

Materiale a stampa

Livello bibliografico

Monografia



2.

Record Nr.

UNISA996466538203316

Autore

Lipman Joseph

Titolo

Foundations of Grothendieck Duality for Diagrams of Schemes [[electronic resource] /] / by Joseph Lipman, Mitsuyasu Hashimoto

Pubbl/distr/stampa

Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2009

ISBN

3-540-85420-7

Edizione

[1st ed. 2009.]

Descrizione fisica

1 online resource (X, 478 p.)

Collana

Lecture Notes in Mathematics, , 0075-8434 ; ; 1960

Classificazione

14A2018E3014F9918A9918F9914L30

Disciplina

516.35

Soggetti

Algebraic geometry

Category theory (Mathematics)

Homological algebra

Algebraic Geometry

Category Theory, Homological Algebra

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Bibliographic Level Mode of Issuance: Monograph

Nota di bibliografia

Includes bibliographical references and indexes.

Nota di contenuto

Joseph Lipman: Notes on Derived Functors and Grothendieck Duality -- Derived and Triangulated Categories -- Derived Functors -- Derived Direct and Inverse Image -- Abstract Grothendieck Duality for Schemes -- Mitsuyasu Hashimoto: Equivariant Twisted Inverses -- Commutativity of Diagrams Constructed from a Monoidal Pair of Pseudofunctors -- Sheaves on Ringed Sites -- Derived Categories and Derived Functors of Sheaves on Ringed Sites -- Sheaves over a Diagram of S-Schemes -- The Left and Right Inductions and the Direct and Inverse Images -- Operations on Sheaves Via the Structure Data -- Quasi-Coherent Sheaves Over a Diagram of Schemes -- Derived Functors of Functors on Sheaves of Modules Over Diagrams of Schemes -- Simplicial Objects -- Descent Theory -- Local Noetherian Property -- Groupoid of Schemes -- Bökstedt—Neeman Resolutions and HyperExt Sheaves -- The Right Adjoint of the Derived Direct Image Functor -- Comparison of Local Ext Sheaves -- The Composition of Two Almost-Pseudofunctors -- The Right Adjoint of the Derived Direct Image Functor of a Morphism of Diagrams -- Commutativity of Twisted Inverse with Restrictions -- Open Immersion Base Change -- The Existence of Compactification and Composition Data for Diagrams of



Schemes Over an Ordered Finite Category -- Flat Base Change -- Preservation of Quasi-Coherent Cohomology -- Compatibility with Derived Direct Images -- Compatibility with Derived Right Inductions -- Equivariant Grothendieck's Duality -- Morphisms of Finite Flat Dimension -- Cartesian Finite Morphisms -- Cartesian Regular Embeddings and Cartesian Smooth Morphisms -- Group Schemes Flat of Finite Type -- Compatibility with Derived G-Invariance -- Equivariant Dualizing Complexes and Canonical Modules -- A Generalization of Watanabe's Theorem -- Other Examples of Diagrams of Schemes.

Sommario/riassunto

The first part written by Joseph Lipman, accessible to mid-level graduate students, is a full exposition of the abstract foundations of Grothendieck duality theory for schemes (twisted inverse image, tor-independent base change,...), in part without noetherian hypotheses, and with some refinements for maps of finite tor-dimension. The ground is prepared by a lengthy treatment of the rich formalism of relations among the derived functors, for unbounded complexes over ringed spaces, of the sheaf functors tensor, hom, direct and inverse image. Included are enhancements, for quasi-compact quasi-separated schemes, of classical results such as the projection and Künneth isomorphisms. In the second part, written independently by Mitsuyasu Hashimoto, the theory is extended to the context of diagrams of schemes. This includes, as a special case, an equivariant theory for schemes with group actions. In particular, after various basic operations on sheaves such as (derived) direct images and inverse images are set up, Grothendieck duality and flat base change for diagrams of schemes are proved. Also, dualizing complexes are studied in this context. As an application to group actions, we generalize Watanabe's theorem on the Gorenstein property of invariant subrings.



3.

Record Nr.

UNIORUON00293314

Autore

SALAUN, Serge

Titolo

La poesía de la guerra de España / Serge Salaün

Pubbl/distr/stampa

Madrid, : Castalia, c1985

ISBN

84-7039-445-2

Descrizione fisica

413 p. : ill. ; 19 cm.

Disciplina

861.6

Soggetti

SPAGNA - Storia - Guerra civile - 1936-1939

POESIA SPAGNOLA - Sec. 20. - Studi

Lingua di pubblicazione

Spagnolo

Formato

Materiale a stampa

Livello bibliografico

Monografia