| |
|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNISA996466512903316 |
|
|
Titolo |
Categorical aspects of topology and analysis : proceedings of an international conference held at Carleton University, Ottawa, August 11-15, 1981 / / edited by B. Banaschewski |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Berlin, Germany : , : Springer, , [1982] |
|
©1982 |
|
|
|
|
|
|
|
|
|
ISBN |
|
|
|
|
|
|
Edizione |
[1st ed. 1982.] |
|
|
|
|
|
Descrizione fisica |
|
1 online resource (XI, 385 p.) |
|
|
|
|
|
|
Collana |
|
Lecture Notes in Mathematics, , 0075-8434 ; ; 915 |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
Bibliographic Level Mode of Issuance: Monograph |
|
|
|
|
|
|
Nota di contenuto |
|
On the largest initial completion of categories of algebras -- The coreflective hull of the contigual spaces in the category of merotopic spaces -- On nuclear limit vector spaces -- Higher order sheaves and Banach modules -- On the non-unique extension of topological to bitopological properties -- A categorical approach to probability theory -- Asscoli's theorem for topological categories -- Rigid spaces and monoidal closedness -- The Puppe and Nomura operators in the category of homotopy pairs -- Universal completions of concrete categories -- Relative nilpotent groups -- Factorization of cones II, with applications to weak Hausdorff spaces -- An essay on free compact groups -- Spectral dualities involving mixed structures -- Categories of orderable spaces -- Factorization theorems for geometric morphisms, II -- On subcategories of banach spaces in sheaves -- Connectednesses and disconnectednesses in S-Near -- Local monocoreflectivity in topological categories -- An algebraic version of Cantor-Bendixson analysis -- On regular-projective spaces in topological-algebraic categories -- Boolean completion and m-convergence -- Birkhoff's theorem for categories -- Structure Functors -- On compact space objects in topoi. |
|
|
|
|
|
|
|
| |