|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNISA996466481503316 |
|
|
Autore |
Fresse Benoit |
|
|
Titolo |
Modules over Operads and Functors [[electronic resource] /] / by Benoit Fresse |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2009 |
|
|
|
|
|
|
|
|
|
ISBN |
|
|
|
|
|
|
Edizione |
[1st ed. 2009.] |
|
|
|
|
|
Descrizione fisica |
|
1 online resource (X, 314 p.) |
|
|
|
|
|
|
Collana |
|
Lecture Notes in Mathematics, , 0075-8434 ; ; 1967 |
|
|
|
|
|
|
Classificazione |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Algebra |
Algebraic topology |
Category theory (Mathematics) |
Homological algebra |
Algebraic Topology |
Category Theory, Homological Algebra |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
Bibliographic Level Mode of Issuance: Monograph |
|
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references and index. |
|
|
|
|
|
|
Nota di contenuto |
|
Categorical and operadic background -- Symmetric monoidal categories for operads -- Symmetric objects and functors -- Operads and algebras in symmetric monoidal categories -- Miscellaneous structures associated to algebras over operads -- The category of right modules over operads and functors -- Definitions and basic constructions -- Tensor products -- Universal constructions on right modules over operads -- Adjunction and embedding properties -- Algebras in right modules over operads -- Miscellaneous examples -- Homotopical background -- Symmetric monoidal model categories for operads -- The homotopy of algebras over operads -- The (co)homology of algebras over operads -- The homotopy of modules over operads and functors -- The model category of right modules -- Modules and homotopy invariance of functors -- Extension and restriction functors and model structures -- Miscellaneous applications -- Appendix: technical verifications -- Shifted modules over operads and functors -- Shifted functors and pushout-products -- Applications of pushout-products of shifted functors. |
|
|
|
|
|
|
|