1.

Record Nr.

UNISA996466474003316

Autore

Shokranian Salahoddin <1948->

Titolo

The Selberg-Arthur trace formula : based on lectures by James Arthur / / Salahoddin Shokranian

Pubbl/distr/stampa

Berlin ; ; Heidelberg : , : Springer-Verlag, , 1992

ISBN

3-540-46659-2

Edizione

[1st ed. 1992.]

Descrizione fisica

1 online resource (IX, 99 p.)

Collana

Lecture Notes in Mathematics ; ; Volume 1503

Disciplina

512.7

Soggetti

Selberg trace formula

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Bibliographic Level Mode of Issuance: Monograph

Nota di contenuto

Contents: Number Theory and Automorphic Representations: Some problems in classical number theory. Modular forms and automorphic representations -- Selberg's Trace Formula: Historical Remarks. Orbital integrals and Selberg's trace formula. Three examples. A necessary condition. Generalizations and applications -- Kernel Functions and the Convergence Theorem: Preliminaries on GL(r). Combinatorics and reduction theory. The convergence theorem -- The Adélic Theory: Basic facts -- The Geometric Theory: The JTO(f) and JT(f) distributions. A geometric I-function. The weight functions -- The Geometric Expansion of the Trace Formula: Weighted orbital integrals. The unipotent distribution -- The Spectral Theory: A review of the Eisenstein series. Cusp forms, truncation, the trace formula -- The Invariant Trace Formula and Its Applications: The in- variant trace formula for GL(r). Applications and remarks -- Bibliography -- Subject Index.

Sommario/riassunto

This book based on lectures given by James Arthur discusses the trace formula of Selberg and Arthur. The emphasis is laid on Arthur's trace formula for GL(r), with several examples in order to illustrate the basic concepts. The book will be useful and stimulating reading for graduate students in automorphic forms, analytic number theory, and non-commutative harmonic analysis, as well as researchers in these fields. Contents: I. Number Theory and Automorphic Representations.1.1. Some problems in classical number theory, 1.2. Modular forms and automorphic representations; II. Selberg's Trace Formula 2.1. Historical



Remarks, 2.2. Orbital integrals and Selberg's trace formula, 2.3.Three examples, 2.4. A necessary condition, 2.5. Generalizations and applications; III. Kernel Functions and the Convergence Theorem, 3.1. Preliminaries on GL(r), 3.2. Combinatorics and reduction theory, 3.3. The convergence theorem; IV. The Ad lic Theory, 4.1. Basic facts; V. The Geometric Theory, 5.1. The JTO(f) and JT(f) distributions, 5.2. A geometric I-function, 5.3. The weight functions; VI. The Geometric Expansionof the Trace Formula, 6.1. Weighted orbital integrals, 6.2. The unipotent distribution; VII. The Spectral Theory, 7.1. A review of the Eisenstein series, 7.2. Cusp forms, truncation, the trace formula; VIII.The Invariant Trace Formula and its Applications, 8.1. The invariant trace formula for GL(r), 8.2. Applications and remarks.