Remarks, 2.2. Orbital integrals and Selberg's trace formula, 2.3.Three examples, 2.4. A necessary condition, 2.5. Generalizations and applications; III. Kernel Functions and the Convergence Theorem, 3.1. Preliminaries on GL(r), 3.2. Combinatorics and reduction theory, 3.3. The convergence theorem; IV. The Ad lic Theory, 4.1. Basic facts; V. The Geometric Theory, 5.1. The JTO(f) and JT(f) distributions, 5.2. A geometric I-function, 5.3. The weight functions; VI. The Geometric Expansionof the Trace Formula, 6.1. Weighted orbital integrals, 6.2. The unipotent distribution; VII. The Spectral Theory, 7.1. A review of the Eisenstein series, 7.2. Cusp forms, truncation, the trace formula; VIII.The Invariant Trace Formula and its Applications, 8.1. The invariant trace formula for GL(r), 8.2. Applications and remarks. |