1.

Record Nr.

UNISA996466415503316

Titolo

Modern statistical methods for health research / / edited by Yichuan Zhao and (Din) Ding-Geng Chen

Pubbl/distr/stampa

Cham, Switzerland : , : Springer, , [2021]

©2021

ISBN

3-030-72437-9

Descrizione fisica

1 online resource (506 pages)

Collana

Emerging Topics in Statistics and Biostatistics Ser.

Disciplina

610.21

Soggetti

Medical statistics

Big data

Estadística mèdica

Biometria

Dades massives

Llibres electrònics

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Nota di contenuto

Intro -- Preface -- Part I: Health Data Analysis and Applications to EHR Data (Chaps. 1 -5) -- Part II: Clinical Trials, FDR, and Applications in Health Science (Chaps. 6 -10) -- Part III: Big Data Analytics and Its Applications (Chaps. 11 -15) -- Part IV: Survival Analysis and Functional Data Analysis (Chaps. 16 -18) -- Part V: Statistical Modeling in Genomic Studies (Chaps. 19 -21) -- Contents -- About the Editors --  --  -- List of Contributors --  -- List of Chapter Reviewers -- Part I Health Data Analysis and Applications to EHR Data -- The Effective Sample Size of EHR-Derived Cohorts Under Biased Sampling -- 1 Introduction -- 2 Methods -- 2.1 Notation and Definitions -- 2.2 Bias and Mean-Squared Error of the Simple Random Sample and the EHR-Based Sample -- 2.3 Effective Sample Size of the EHR-Derived Cohort -- 2.4 Simulation Study Design -- 3 Results -- 4 Discussion -- References -- Non-Gaussian Models for Object Motion Analysis with Time-Lapse Fluorescence Microscopy Images -- 1 Introduction -- 2 Method -- 2.1 Particle Tracking Framework -- 2.2 Object Segmentation -- 2.3 Observation and Dynamics Models -- Ellipsoid Model -- Voxel-



Based Model -- 2.4 Multiple Object Tracking Management -- 3 Experiments and Results -- 3.1 Validation with Artificial Data -- 3.2 Bacteria Motility Analysis -- 3.3 Tumor Spheroid Study -- 4 Conclusions -- References -- Alternative Capture-Recapture Point and Interval Estimators Based on Two Surveillance Streams -- 1 Introduction -- 2 Methods -- 2.1 The LP Conditions and Their Central Role -- 2.2 Some Cautionary Notes on Alternatives to the LP Estimator -- 2.3 Loglinear Models and a Perspective on the Use of Covariates -- 2.4 A Rationale for Renewed Statistical Interest Under the LP Conditions -- 2.5 Review of Classical Point Estimators in the Two-Capture Case.

2.6 A Class of Estimators Including  LP  and  Chap  as Special Cases -- 2.7 A New Estimator Targeting Median Bias as a Criterion -- 2.8 New Alternatives to the Chapman Estimator Aimed at Reduced Mean Bias -- 2.9 Closed-Form Confidence Interval Estimation in the Two-Capture Case -- 2.10 An Adapted Bayesian Credible Interval Approach -- 3 Motivating Example Data and Results -- 4 Simulation Studies -- 5 Discussion -- References -- A Uniform Shrinkage Prior in Spatiotemporal Poisson Models for Count Data -- 1 Introduction -- 2 Derivation of a USP for the Variance Components in GLMM with Proper CAR and Its Properties -- 2.1 Derivation of the USP -- 2.2 Motivation of the Derived USP -- 2.3 Analytical Properties of the Derived USP -- 3 Application to the Leptospirosis Data -- 4 Simulation Study -- 5 Discussion -- References -- A Review of Multiply Robust Estimation with Missing Data -- 1 Introduction -- 2 Basic Setups -- 3 Multiply Robust Estimation Procedure -- 3.1 Calibration Approach -- 3.2 Projection Approach -- 3.3 Multiple Imputation Approach -- 4 Simulation Study -- 5 Real Application -- 6 Discussion -- References -- Part II Clinical Trials, FDR, and Applications in Health Science -- Approaches to Combining Phase II Proof-of-Conceptand Dose-Finding Trials -- 1 Introduction -- 2 Two Studies-Phase IIa (Proof-of-Concept) and Phase IIb (Dose-Finding) -- 3 A Single Study with Combined Objectives (PoC and DF) -- 3.1 Single Fixed Design -- 3.2 Two-Stage Phase IIa/IIb Adaptive Designs -- 4 Sample Size Comparison and Discussion -- 5 Concluding Remarks -- References -- Designs of Early Phase Cancer Trials with Drug Combinations -- 1 Introduction -- 2 Designs for Phase I Clinical Trials -- 2.1 Phase I Model-based Designs for Drug Combinations -- Model -- Prior and Posterior Distributions -- Trial Design -- Design Operating Characteristics -- Results.

2.2 Attributing Dose-Limiting Toxicities -- Model -- Trial Design -- Results -- 2.3 Adding a Baseline Covariate -- Model -- Prior and Posterior Distributions -- Trial Design -- Results -- 3 Designs for Phase I-II Clinical Trials -- 3.1 Binary Endpoint -- Model -- Trial Design -- Results -- 3.2 Survival Endpoint -- Introduction -- Model -- Trial Design -- Results -- 4 Discussion -- References -- Controlling the False Discovery Rate of Grouped Hypotheses -- 1 Introduction -- 2 Modeling and Sequential Framework -- 2.1 Notation and Models -- 2.2 A General Framework for Grouped Multiple Testing Procedures -- 3 Procedures for Group Multiple Testing -- 3.1 Conditional Local FDR (CLfdr) -- 3.2 Group-Weighted Benjamini-Hochberg (GBH) -- 3.3 Weighting Fixed Cutoff (WFC) -- 3.4 Structure-Adaptive Benjamini-Hochberg (SABHA) -- 3.5 Independent Hypothesis Weighting (IHWc) -- 3.6 Adaptive p-Value Thresholding (AdaPT) -- 3.7 Linear and Nonlinear Rankings -- 4 Simulation -- 4.1 Results -- 5 Application -- 6 Conclusions and Discussions -- Appendix -- A.1 Two-Parameter AdaPT -- A.2 EM Steps -- A.3 Initialization -- References -- Classic Linear Mediation Analysis of Complex Survey Data Using Balanced Repeated Replication -- 1 Introduction -- 2 Technical Details -- 2.1 Mediation Model -- 2.2 Complex Surveys Using BRR -- 2.3 Mediation



Incorporating BRR -- Point Estimate -- Standard Error Estimate -- Significance Test -- 3 SAS Macro and Illustration -- 3.1 Components of %MediationBRR -- 3.2 Application to PISA: A Single-Mediator Model -- 3.3 Application to TUS-CPS: A Multi-Mediator Model -- 4 Discussion -- Appendix -- References -- A Review of Bayesian Optimal Experimental Design on DifferentModels -- 1 Introduction -- 1.1 Pseudo-Bayesian Optimal Design -- 1.2 Fully Bayesian Optimal Design -- 2 Bayesian Designs for Linear Models.

3 Bayesian Designs for Generalized Linear Models -- 4 Bayesian Designs for Nonlinear Models -- 4.1 Bayesian Optimal Designs for PKPD Models -- 4.2 Bayesian Optimal Designs for Biological and Chemical Models -- 5 Conclusions -- References -- Part III Big Data Analytics and Its Applications -- A Selective Review on Statistical Techniques for Big Data -- 1 Introduction -- 2 Randomized Numerical Linear Algebra -- 2.1 Random Projection -- 2.2 Nonuniform Random Sampling -- 3 Information-Based Optimal Subdata Selection -- 4 Informative Subsampling -- 4.1 Optimal Subsampling -- 4.2 Local Case-Control Subsampling -- 5 Divide-and-Conquer and Updating Methods -- 5.1 Divide-and-Conquer Methods -- 5.2 Updating Methods -- Online Updating Methods -- Stochastic Gradient Descent -- 6 Summary and Discussion -- References -- A Selective Overview of Recent Advances in Spectral Clustering and Their Applications -- 1 Introduction -- 2 Spectral Clustering -- 2.1 The Similarity Matrix -- 2.2 Unnormalized Spectral Clustering -- 2.3 Normalized Spectral Clustering -- 2.4 Equivalence to Weighted Kernel k-Means -- 2.5 Selecting the Total Number of Clusters -- General Clustering-Independent Criteria -- Cluster Selection Criteria Specific to Spectral Clustering -- 3 New Developments of Spectral Clustering -- 3.1 Spectral Biclustering -- 3.2 Multi-View Spectral Clustering -- 3.3 High-Order Spectral Clustering -- 3.4 Constrained Spectral Clustering -- 3.5 Evolutionary Spectral Clustering -- PCQ -- PCM -- Determining the Weight Parameter α -- 3.6 Incremental Spectral Clustering -- 3.7 Sparse Spectral Clustering -- 4 Discussion -- References -- A Review on Modern Computational Optimal Transport Methods with Applications in Biomedical Research -- 1 Introduction -- 2 Background of the Optimal Transport Problem -- 3 Regularization-Based Optimal Transport Methods.

3.1 Computational Cost for OT Problems -- 3.2 Sinkhorn Distance -- 3.3 Sinkhorn Algorithms with the Nyström Method -- 4 Projection-Based Optimal Transport Methods -- 4.1 Random Projection OT Method -- 4.2 Projection Pursuit OT Method -- 5 Applications in Biomedical Research -- 5.1 Identify Development Trajectories in Reprogramming -- 5.2 Data Augmentation for Biomedical Data -- References -- Variable Selection Approaches in High-Dimensional Space -- 1 Introduction -- 2 Penalized Likelihood Approaches -- 2.1 Penalty Functions -- 2.2 Canonical Models in High Dimension -- Linear Regression Model -- Logistic Regression Model -- Proportional Hazards Model -- 2.3 Algorithm and Implementation -- Penalized Weighted Least Squares -- Penalized Likelihoods -- Tuning Parameter Selection -- 3 Feature Screening for Ultra-High-Dimensional Data -- 3.1 Sure Independence Screening -- Correlation Ranking -- Maximum Marginal Likelihoods -- 3.2 Iterative Sure Independence Screening -- 3.3 Reduction of False Positive Rate -- 4 Real Data Example -- 5 High-Dimensional Inference -- 6 Conclusion -- References -- Estimation Methods for Item Factor Analysis: An Overview -- 1 Introduction -- 2 IFA Models -- 2.1 Modeling Framework -- 2.2 Examples of IFA Models -- 2.3 Exploratory and Confirmatory Analyses -- 3 Estimation Methods -- 3.1 Estimation Based on Joint Likelihood -- 3.2 Estimation Based on



Marginal Likelihood -- 3.3 Limited-Information Estimation -- 3.4 Spectral Method -- 4 Computer Implementations -- 5 Conclusions -- References -- Part IV Survival Analysis and Functional Data Analysis -- Functional Data Modeling and Hypothesis Testing for Longitudinal Alzheimer Genome-Wide Association Studies -- 1 Introduction -- 2 Functional Modeling of Longitudinal Phenotype Data and Estimation Procedure -- 2.1 Model Assumptions -- 2.2 Estimation Under the Full Model.

2.3 Estimation Under the Reduced Model.