1.

Record Nr.

UNISA996466400403316

Autore

Buttenschön Andreas

Titolo

Non-local cell adhesion models : symmetries and bifurcations in 1-D / / Andreas Buttenschön, Thomas Hillen

Pubbl/distr/stampa

Cham, Switzerland : , : Springer, , [2021]

©2021

ISBN

3-030-67111-9

Edizione

[1st ed. 2021.]

Descrizione fisica

1 online resource (VIII, 152 p. 35 illus., 15 illus. in color.)

Collana

CMS/CAIMS Books in Mathematics

Disciplina

574.87

Soggetti

Cell adhesion - Mathematical models

Interacció cel·lular

Models matemàtics

Llibres electrònics

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Nota di contenuto

Introduction -- Preliminaries -- The Periodic Problem -- Basic Properties -- Local Bifurcation -- Global Bifurcation -- Non-local Equations with Boundary Conditions -- No-flux Boundary Conditions -- Discussion and future directions.

Sommario/riassunto

This monograph considers the mathematical modeling of cellular adhesion, a key interaction force in cell biology. While deeply grounded in the biological application of cell adhesion and tissue formation, this monograph focuses on the mathematical analysis of non-local adhesion models. The novel aspect is the non-local term (an integral operator), which accounts for forces generated by long ranged cell interactions. The analysis of non-local models has started only recently, and it has become a vibrant area of applied mathematics. This monograph contributes a systematic analysis of steady states and their bifurcation structure, combining global bifurcation results pioneered by Rabinowitz, equivariant bifurcation theory, and the symmetries of the non-local term. These methods allow readers to analyze and understand cell adhesion on a deep level.