1.

Record Nr.

UNISA996466397803316

Autore

Ghaemi Mohammad Bagher

Titolo

Advances in matrix inequalities / / Mohammad Bagher Ghaemi [and three others]

Pubbl/distr/stampa

Cham, Switzerland : , : Springer, , [2021]

©2021

ISBN

3-030-76047-2

Descrizione fisica

1 online resource (287 pages)

Collana

Springer Optimization and Its Applications ; ; v.176

Disciplina

512.9434

Soggetti

Matrix inequalities

Matrius (Matemàtica)

Desigualtats matricials

Operator theory

Llibres electrònics

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Nota di bibliografia

Includes bibliographical references and index.

Nota di contenuto

Intro -- Preface -- Contents -- Acronyms -- 1 Elementary Linear Algebra Review -- 1.1 Operators and Matrices in Hilbert Space -- 2 Interpolating the Arithmetic-Geometric Mean Inequality and Its Operator Version -- 2.1 Refinements of the Scalar Young and Heinz Inequalities -- 2.2 Operator Inequalities Involving Improved Young Inequality -- 2.3 Advanced Refinements of the Scalar Reverse Young Inequalities -- 2.4 Improvements of the Operator Reverse Young Inequality -- 3 Operator Inequalities for Positive Linear Maps -- 3.1 On an Operator Kantorovich Inequality for Positive Linear Maps -- 3.2 A Schwarz Inequality for Positive Linear Maps -- 3.3 Squaring the Reverse Arithmetic-Geometric Mean Inequality -- 3.4 Reverses of Ando's Inequality for Positive Linear Maps -- 3.5 Squaring the Reverse Ando's Operator Inequality -- 4 Operator Inequalities Involving Operator Monotone Functions -- 4.1 Young Inequalities Involving Operator Monotone Functions -- 4.2 Eigenvalue Inequalities Involving Operator Concave Functions -- 4.3 Operator Aczél Inequality Involving Operator Monotone Functions -- 4.4 Norm Inequalities Involving Operator Monotone Functions -- 5 Inequalities for Sector Matrices -- 5.1



Haynsworth and Hartfiel Type Determinantal Inequality -- 5.2 Inequalities with Determinants of Perturbed Positive Matrices -- 5.3 Analogue of Fischer's Inequality for Sector Matrices -- 5.4 Analogues of Hadamard and Minkowski Inequality for Sector Matrices -- 5.5 Generalizations of the Brunn Minkowski Inequality -- 5.6 A Lewent Type Determinantal Inequality -- 5.7 Principal Powers of Matrices with Positive Definite Real Part -- 5.8 Geometric Mean of Accretive Operators -- 5.9 Weighted Geometric Mean of Accretive Operators and Its Applications -- 5.10 Ficher Type Determinantal Inequalities for Accretive-Dissipative Matrices.

5.11 Extensions of Fischer's Inequality for Sector Matrices -- 5.12 Singular Value Inequalities of Sector Matrices -- 5.13 Extension of Rotfel'd Inequality for Sector Matrices -- 5.14 A Further Extension of Rotfel'd Inequality for Accretive-Dissipative Matrices -- 5.15 Hilbert-Schmidt Norm Inequalities for Accretive-Dissipative Operators -- 5.16 Schatten p-Norm Inequalities for Accretive-Dissipative Matrices -- 5.17 Schatten p-Norm Inequalities for Sector Matrices -- 5.18 Schatten p-Norms and Determinantal Inequalities Involving Partial Traces -- 5.19 Ando-Choi Type Inequalities for Sector Matrices -- 5.20 Geometric Mean Inequality for Sector Matrices -- 5.21 Weighted Geometric Mean Inequality for Sector Matrices -- 6 Positive Partial Transpose Matrix Inequalities -- 6.1 Singular Value Inequalities Related to PPT Matrices -- 6.2 Matrix Inequalities and Completely PPT Maps -- 6.3 Hiroshima's Type Inequalities for Positive Semidefinite Block Matrices -- 6.4 Geometric Mean and Norm Schwarz Inequality -- 6.5 Inequalities Involving the Off-Diagonal Block of a PPT Matrix -- 6.6 Unitarily Invariant Norm Inequalities of PPT Matrices -- 6.7 On Symmetric Norm Inequalities for Positive Block Matrices -- 6.8 Matrix Norm Inequalities and Majorization Relation for Singular Values -- Appendix  References --  -- Index.