| |
|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNISA996386503103316 |
|
|
Autore |
Woodhouse John |
|
|
Titolo |
Woodhouse 1665 [[electronic resource] ] : a new almanack and prognostication for the year of our Lord God 1665 : being the first from bissextile, or leap-year, and from the worlds creation 5628 : wherein is contained many things both usefull, pleasant, and profitable for all sorts of men, calculated for the meridian of ... London, and may generally serve for all Great Britain / / by John Woodhouse . |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
London, : Printed by A.W. for the Company of Stationers, 1665 |
|
|
|
|
|
|
|
Descrizione fisica |
|
|
|
|
|
|
Soggetti |
|
Almanacs, English |
Astrology |
Ephemerides |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
Second part has special t.p. with imprint: London : Printed by J. Macock for the Company of Stationers, 1665. |
Reproduction of original in the Bodleian Library. |
|
|
|
|
|
|
|
|
Sommario/riassunto |
|
|
|
|
|
|
|
|
|
|
|
|
|
2. |
Record Nr. |
UNISA996466394503316 |
|
|
Autore |
Doria Celso Melchiades |
|
|
Titolo |
Differentiability in Banach spaces, differential forms and applications / / Celso Melchiades Doria |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Cham, Switzerland : , : Springer, , [2021] |
|
©2021 |
|
|
|
|
|
|
|
|
|
ISBN |
|
|
|
|
|
|
Descrizione fisica |
|
1 online resource (369 pages) |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Banach spaces |
Espais de Banach |
Stokes' theorem |
Llibres electrònics |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Nota di contenuto |
|
Intro -- Preface -- Introduction -- Contents -- 1 Differentiation in mathbbRn -- 1 Differentiability of Functions f:mathbbRnrightarrowmathbbR -- 1.1 Directional Derivatives -- 1.2 Differentiable Functions -- 1.3 Differentials -- 1.4 Multiple Derivatives -- 1.5 Higher Order Differentials -- 2 Taylor's Formula -- 3 Critical Points and Local Extremes -- 3.1 Morse Functions -- 4 The Implicit Function Theorem and Applications -- 5 Lagrange Multipliers -- 5.1 The Ultraviolet Catastrophe: The Dawn of Quantum Mechanics -- 6 Differentiable Maps I -- 6.1 Basics Concepts -- 6.2 Coordinate Systems -- 6.3 The Local Form of an Immersion -- 6.4 The Local Form of Submersions -- 6.5 Generalization of the Implicit Function Theorem -- 7 Fundamental Theorem of Algebra -- 8 Jacobian Conjecture -- 8.1 Case n=1 -- 8.2 Case nge2 -- 8.3 Covering Spaces -- 8.4 Degree Reduction -- 2 Linear Operators in Banach Spaces -- 1 Bounded Linear Operators on Normed Spaces -- 2 Closed Operators and Closed Range Operators -- 3 Dual Spaces -- 4 The Spectrum of a Bounded Linear Operator -- 5 Compact Linear Operators -- 6 Fredholm Operators -- 6.1 The Spectral Theory of Compact Operators -- 7 Linear Operators on Hilbert Spaces -- 7.1 Characterization of Compact Operators on |
|
|
|
|
|
|
|
|
|
|
Hilbert Spaces -- 7.2 Self-adjoint Compact Operators on Hilbert Spaces -- 7.3 Fredholm Alternative -- 7.4 Hilbert-Schmidt Integral Operators -- 8 Closed Unbounded Linear Operators on Hilbert Spaces -- 3 Differentiation in Banach Spaces -- 1 Maps on Banach Spaces -- 1.1 Extension by Continuity -- 2 Derivation and Integration of Functions f:[a,b]rightarrowE -- 2.1 Derivation of a Single Variable Function -- 2.2 Integration of a Single Variable Function -- 3 Differentiable Maps II -- 4 Inverse Function Theorem (InFT) -- 4.1 Prelude for the Inverse Function Theorem -- 4.2 InFT for Functions of a Single Real Variable. |
4.3 Proof of the Inverse Function Theorem (InFT) -- 4.4 Applications of InFT -- 5 Classical Examples in Variational Calculus -- 5.1 Euler-Lagrange Equations -- 5.2 Examples -- 6 Fredholm Maps -- 6.1 Final Comments and Examples -- 7 An Application of the Inverse Function Theorem to Geometry -- 4 Vector Fields -- 1 Vector Fields in mathbbRn -- 2 Conservative Vector Fields -- 3 Existence and Uniqueness Theorem for ODE -- 4 Flow of a Vector Field -- 5 Vector Fields as Differential Operators -- 6 Integrability, Frobenius Theorem -- 7 Lie Groups and Lie Algebras -- 8 Variations over a Flow, Lie Derivative -- 9 Gradient, Curl and Divergent Differential Operators -- 5 Vector Integration, Potential Theory -- 1 Vector Calculus -- 1.1 Line Integral -- 1.2 Surface Integral -- 2 Classical Theorems of Integration -- 2.1 Interpretation of the Curl and Div Operators -- 3 Elementary Aspects of the Theory of Potential -- 6 Differential Forms, Stokes Theorem -- 1 Exterior Algebra -- 2 Orientation on V and on the Inner Product on Λ(V) -- 2.1 Orientation -- 2.2 Inner Product in Λ(V) -- 2.3 Pseudo-Inner Product, the Lorentz Form -- 3 Differential Forms -- 3.1 Exterior Derivative -- 4 De Rham Cohomology -- 4.1 Short Exact Sequence -- 5 De Rham Cohomology of Spheres and Surfaces -- 6 Stokes Theorem -- 7 Orientation, Hodge Star-Operator and Exterior Co-derivative -- 8 Differential Forms on Manifolds, Stokes Theorem -- 8.1 Orientation -- 8.2 Integration on Manifolds -- 8.3 Exterior Derivative -- 8.4 Stokes Theorem on Manifolds -- 7 Applications to the Stokes Theorem -- 1 Volumes of the (n+1)-Disk and of the n-Sphere -- 2 Harmonic Functions -- 2.1 Laplacian Operator -- 2.2 Properties of Harmonic Functions -- 3 Poisson Kernel for the n-Disk DnR -- 4 Harmonic Differential Forms -- 4.1 Hodge Theorem on Manifolds -- 5 Geometric Formulation of the Electromagnetic Theory. |
5.1 Electromagnetic Potentials -- 5.2 Geometric Formulation -- 5.3 Variational Formulation -- 6 Helmholtz's Decomposition Theorem -- Appendix A Basics of Analysis -- 1 Sets -- 2 Finite-dimensional Linear Algebra: V=mathbbRn -- 2.1 Matrix Spaces -- 2.2 Linear Transformations -- 2.3 Primary Decomposition Theorem -- 2.4 Inner Product and Sesquilinear Forms -- 2.5 The Sylvester Theorem -- 2.6 Dual Vector Spaces -- 3 Metric and Banach Spaces -- 4 Calculus Theorems -- 4.1 One Real Variable Functions -- 4.2 Functions of Several Real Variables -- 5 Proper Maps -- 6 Equicontinuity and the Ascoli-Arzelà Theorem -- 7 Functional Analysis Theorems -- 7.1 Riesz and Hahn-Banach Theorems -- 7.2 Topological Complementary Subspace -- 8 The Contraction Lemma -- Appendix B Differentiable Manifolds, Lie Groups -- 1 Differentiable Manifolds -- 2 Bundles: Tangent and Cotangent -- 3 Lie Groups -- Appendix C Tensor Algebra -- 1 Tensor Product -- 2 Tensor Algebra -- Appendix References -- -- Index. |
|
|
|
|
|
|
|
|
|
|
|
|
|
3. |
Record Nr. |
UNINA9910792384903321 |
|
|
Titolo |
Comprehension across the curriculum [[electronic resource] ] : perspectives and practices K-12 / / edited by Kathy Ganske, Douglas Fisher |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
New York, : Guilford Press, c2010 |
|
|
|
|
|
|
|
ISBN |
|
1-282-49010-9 |
9786612490101 |
1-60623-513-3 |
1-60623-514-1 |
|
|
|
|
|
|
|
|
Descrizione fisica |
|
1 online resource (350 p.) |
|
|
|
|
|
|
Collana |
|
Solving problems in teaching of literacy |
|
|
|
|
|
|
Altri autori (Persone) |
|
GanskeKathy |
FisherDouglas |
|
|
|
|
|
|
|
|
Disciplina |
|
428.0071 |
428.4 |
428.4/3 |
428.43 |
|
|
|
|
|
|
|
|
Soggetti |
|
Literacy |
Reading comprehension |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
Description based upon print version of record. |
|
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references and index. |
|
|
|
|
|
|
Nota di contenuto |
|
Front Matter; Contents; Introduction; Chapter 1; Chapter 2; Chapter 3; Chapter 4; Chapter 5; Chapter 6; Chapter 7; Chapter 8; Chapter 9; Chapter 10; Chapter 11; Chapter 12; Chapter 13; Index |
|
|
|
|
|
|
|
|
Sommario/riassunto |
|
Successful students use comprehension skills and strategies throughout the school day. In this timely book, leading scholars present innovative ways to support reading comprehension across content areas and the full K-12 grade range. Chapters provide specific, practical guidance for selecting rewarding texts and promoting engagement and understanding in social studies, math, and science, as well as language arts and English classrooms. Cutting-edge theoretical perspectives and research findings are clearly explained. Special attention is given |
|
|
|
|
|
|
|
| |