1.

Record Nr.

UNISA996466386703316

Autore

Markfelder Simon

Titolo

Convex integration applied to the multi-dimensional compressible Euler equations / / Simon Markfelder

Pubbl/distr/stampa

Cham, Switzerland : , : Springer, , [2021]

©2021

ISBN

3-030-83785-8

Descrizione fisica

1 online resource (244 pages)

Collana

Lecture Notes in Mathematics ; ; v.2294

Classificazione

35Q31

76N10

35L65

35L45

35L50

Disciplina

515.35

Soggetti

Differential equations

Physics

Global analysis (Mathematics)

Equacions de Lagrange

Funcions convexes

Integració numèrica

Problemes de contorn

Llibres electrònics

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Nota di bibliografia

Includes bibliographical references and index.

Nota di contenuto

Intro -- Preface -- Contents -- Part I The Problem Studied in This Book -- 1 Introduction -- 1.1 The Euler Equations -- 1.2 Weak Solutions and Admissibility -- 1.3 Overview on Well-Posedness Results -- 1.4 Structure of This Book -- 2 Hyperbolic Conservation Laws -- 2.1 Formulation of a Conservation Law -- 2.2 Initial Boundary Value Problem -- 2.3 Hyperbolicity -- 2.4 Companion Laws and Entropies -- 2.5 Admissible Weak Solutions -- 3 The Euler Equations as a Hyperbolic Systemof Conservation Laws -- 3.1 Barotropic Euler System -- 3.1.1 Hyperbolicity -- 3.1.2 Entropies -- 3.1.3 Admissible Weak Solutions -- 3.2 Full Euler System -- 3.2.1 Hyperbolicity -- 3.2.2 Entropies -- 3.2.3



Admissible Weak Solutions -- Part II Convex Integration -- 4 Preparation for Applying Convex Integrationto Compressible Euler -- 4.1 Outline and Preliminaries -- 4.1.1 Adjusting the Problem -- 4.1.2 Tartar's Framework -- 4.1.3 Plane Waves and the Wave Cone -- 4.1.4 Sketch of the Convex Integration Technique -- 4.2 -Convex Hulls -- 4.2.1 Definitions and Basic Facts -- 4.2.2 The HN-Condition and a Way to Define U -- 4.2.3 The -Convex Hull of Slices -- 4.2.4 The -Convex Hull if the Wave Cone is Complete -- 4.3 The Relaxed Set U Revisited -- 4.3.1 Definition of U -- 4.3.2 Computation of U -- 4.4 Operators -- 4.4.1 Statement of the Operators -- 4.4.2 Lemmas for the Proof of Proposition 4.4.1 -- 4.4.3 Proof of Proposition 4.4.1 -- 5 Implementation of Convex Integration -- 5.1 The Convex-Integration-Theorem -- 5.1.1 Statement of the Theorem -- 5.1.2 Functional Setup -- 5.1.3 The Functionals I0 and the Perturbation Property -- 5.1.4 Proof of the Convex-Integration-Theorem -- 5.2 Proof of the Perturbation Property -- 5.2.1 Lemmas for the Proof -- 5.2.2 Proof of Lemma 5.2.4 -- 5.2.3 Proof of Lemma 5.2.1 Using Lemmas 5.2.2, 5.2.3and 5.2.4.

5.2.4 Proof of the Perturbation Property Using Lemma 5.2.1 -- 5.3 Convex Integration with Fixed Density -- 5.3.1 A Modified Version of the Convex-Integration-Theorem -- 5.3.2 Proof the Modified Perturbation Property -- Part III Application to Particular Initial (Boundary) Value Problems -- 6 Infinitely Many Solutions of the Initial Boundary Value Problem for Barotropic Euler -- 6.1 A Simple Result on Weak Solutions -- 6.2 Possible Improvements to Obtain Admissible Weak Solutions -- 6.3 Further Possible Improvements -- 7 Riemann Initial Data in Two Space Dimensionsfor Isentropic Euler -- 7.1 One-Dimensional Self-Similar Solution -- 7.2 Summary of the Results on Non-/Uniqueness -- 7.3 Non-Uniqueness Proof if the Self-Similar Solution Consists of One Shock and One Rarefaction -- 7.3.1 Condition for Non-Uniqueness -- 7.3.2 The Corresponding System of Algebraic Equations and Inequalities -- 7.3.3 Simplification of the Algebraic System -- 7.3.4 Solution of the Algebraic System if the Rarefaction is ``Small'' -- 7.3.5 Proof of Theorem 7.3.1 via an Auxiliary State -- 7.4 Sketches of the Non-Uniqueness Proofs for the Other Cases -- 7.4.1 Two Shocks -- 7.4.2 One Shock -- 7.4.3 A Contact Discontinuity and at Least One Shock -- 7.5 Other Results in the Context of the Riemann Problem -- 8 Riemann Initial Data in Two Space Dimensions for Full Euler -- 8.1 One-Dimensional Self-Similar Solution -- 8.2 Summary of the Results on Non-/Uniqueness -- 8.3 Non-Uniqueness Proof if the Self-Similar Solution Contains Two Shocks -- 8.3.1 Condition for Non-Uniqueness -- 8.3.2 The Corresponding System of Algebraic Equations and Inequalities -- 8.3.3 Solution of the Algebraic System -- 8.4 Sketches of the Non-Uniqueness Proofs for the Other Cases -- 8.4.1 One Shock and One Rarefaction -- 8.4.2 One Shock -- 8.5 Other Results in the Context of the Riemann Problem.

A Notation and Lemmas -- A.1 Sets -- A.2 Vectors and Matrices -- A.2.1 General Euclidean Spaces -- A.2.2 The Physical Space and the Space-Time -- A.2.3 Phase Space -- A.3 Sequences -- A.4 Functions -- A.4.1 Basic Notions -- A.4.2 Differential Operators -- Functions of Time and Space -- Functions of the State Vector -- A.4.3 Function Spaces -- A.4.4 Integrability Conditions -- A.4.5 Boundary Integrals and the Divergence Theorem -- A.4.6 Mollifiers -- A.4.7 Periodic Functions -- A.5 Convexity -- A.5.1 Convex Sets and Convex Hulls -- A.5.2 Convex Functions -- A.6 Semi-Continuity -- A.7 Weak- Convergence in L∞ -- A.8 Baire Category Theorem -- Bibliography -- Index.