1.

Record Nr.

UNISA996466377803316

Autore

Yengui Ihsen

Titolo

Constructive Commutative Algebra [[electronic resource] ] : Projective Modules Over Polynomial Rings and Dynamical Gröbner Bases / / by Ihsen Yengui

Pubbl/distr/stampa

Cham : , : Springer International Publishing : , : Imprint : Springer, , 2015

ISBN

3-319-19494-1

Edizione

[1st ed. 2015.]

Descrizione fisica

1 online resource (VII, 271 p. 5 illus.)

Collana

Lecture Notes in Mathematics, , 0075-8434 ; ; 2138

Disciplina

512.4

Soggetti

Commutative algebra

Commutative rings

Mathematical logic

Computer science—Mathematics

Commutative Rings and Algebras

Mathematical Logic and Foundations

Symbolic and Algebraic Manipulation

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Bibliographic Level Mode of Issuance: Monograph

Nota di contenuto

Projective modules over polynomial rings -- Dynamical Gr¨obner bases -- Syzygies in polynomial rings over valuation domains -- Exercises -- Detailed solutions to the exercises.

Sommario/riassunto

The main goal of this book is to find the constructive content hidden in abstract proofs of concrete theorems in Commutative Algebra, especially in well-known theorems concerning projective modules over polynomial rings (mainly the Quillen-Suslin theorem) and syzygies of multivariate polynomials with coefficients in a valuation ring. Simple and constructive proofs of some results in the theory of projective modules over polynomial rings are also given, and light is cast upon recent progress on the Hermite ring and Gröbner ring conjectures. New conjectures on unimodular completion arising from our constructive approach to the unimodular completion problem are presented. Constructive algebra can be understood as a first preprocessing step for computer algebra that leads to the discovery of general algorithms,



even if they are sometimes not efficient. From a logical point of view, the dynamical evaluation gives a constructive substitute for two highly nonconstructive tools of abstract algebra: the Law of Excluded Middle and Zorn's Lemma. For instance, these tools are required in order to construct the complete prime factorization of an ideal in a Dedekind ring, whereas the dynamical method reveals the computational content of this construction. These lecture notes follow this dynamical philosophy.