1.

Record Nr.

UNISA996464420303316

Titolo

Pattern recognition : 42nd DAGM German Conference, DAGM GCPR 2020, Tübingen, Germany, September 28 - October 1, 2020, proceedings / / Zeynep Akata, Andreas Geiger, Torsten Sattler (editors)

Pubbl/distr/stampa

Cham, Switzerland : , : Springer, , [2021]

©2021

ISBN

3-030-71278-8

Descrizione fisica

1 online resource (504 pages)

Collana

Lecture Notes in Computer Science ; ; v.12544

Disciplina

006.4

Soggetti

Pattern recognition systems

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Nota di contenuto

Intro -- Preface -- Organization -- Awards -- Contents -- Characterizing the Role of a Single Coupling Layer in Affine Normalizing Flows -- 1 Introduction -- 2 Related Work -- 3 Single Affine Coupling Layer -- 3.1 Architecture -- 3.2 KL Divergence Minimizer -- 3.3 Tight Bound on Loss -- 3.4 Determining the Optimal Rotation -- 3.5 Independent Outputs -- 4 Layer-Wise Learning -- 5 Conclusion -- References -- Semantic Bottlenecks: Quantifying and Improving Inspectability of Deep Representations -- 1 Introduction -- 2 Related Work -- 3 Semantic Bottlenecks -- 3.1 Supervised Semantic Bottlenecks (SSBs) -- 3.2 Unsupervised Semantic Bottlenecks (USBs) -- 4 Quantification of Layer Output Inspectability -- 4.1 AUiC Metric -- 4.2 Discussion -- 5 Results -- 5.1 Setup -- 5.2 Quantitative Improvements with SBs -- 5.3 Qualitative Improvements with SBs -- 6 Conclusion -- References -- Bias Detection and Prediction of Mapping Errors in Camera Calibration -- 1 Introduction -- 2 Fundamentals -- 3 Related Work -- 4 Detecting Systematic Errors -- 5 The Expected Mapping Error (EME) -- 6 Experimental Evaluation -- 7 Results -- 8 Application in Calibration Guidance -- 9 Conclusion and Future Research -- References -- Learning to Identify Physical Parameters from Video Using Differentiable Physics -- 1 Introduction -- 1.1 Related Work -- 2 Background -- 2.1 Unconstrained and Constrained Dynamics -- 3 Method -- 3.1 Network Architecture -- 3.2 Training



Losses -- 4 Experiments -- 4.1 Simulated Scenarios and Observability Analysis -- 4.2 Results -- 4.3 Qualitative Video Prediction Results -- 4.4 Discussion and Limitations -- 5 Conclusion -- References -- Assignment Flow for Order-Constrained OCT Segmentation -- 1 Introduction -- 2 Assignment Flow -- 3 OCT Data Representation by Covariance Descriptors -- 4 Ordered Layer Segmentation -- 4.1 Ordering Constraint.

4.2 Ordered Assignment Flow -- 5 Experimental Results and Discussion -- 6 Conclusion -- References -- Boosting Generalization in Bio-signal Classification by Learning the Phase-Amplitude Coupling -- 1 Introduction -- 2 Related Work -- 3 Learning to Detect the Phase-Amplitude Coupling -- 4 Experiments -- 4.1 Data Sets -- 4.2 Training Procedures and Models -- 4.3 Evaluation Procedures -- 4.4 Generalization on the Sleep Cassette Data Set -- 4.5 Generalization on the ISRUC-Sleep Data Set -- 4.6 Comparison to the Relative Positioning Task -- 4.7 Results on the Sleep Telemetry and CHB-MIT Data Sets -- 4.8 Impact of the Window Size -- 4.9 Frozen vs Fine-Tuned Encoder -- 4.10 Architecture -- 5 Conclusions -- References -- Long-Tailed Recognition Using Class-Balanced Experts -- 1 Introduction -- 2 Related Work -- 3 Method -- 3.1 Long-Tailed Recognition Using Class-Balanced Experts -- 3.2 Out-of-Distribution Detection for Experts -- 3.3 Fusing Expert Posteriors -- 4 Experiments -- 4.1 Oracle Performance -- 4.2 Effect of Joint Calibration Module -- 4.3 Diverse Ensembles with Experts -- 4.4 Comparison to the State-of-the-Art -- 4.5 Discussion -- 5 Conclusion -- References -- Analyzing the Dependency of ConvNets on Spatial Information -- 1 Introduction -- 2 Related Work -- 3 Methods and Experimental Setup -- 3.1 Approaches to Constrain Information -- 3.2 Experimental Setup -- 4 Results -- 4.1 Spatial and Channel-Wise Shuffle on VGG-16 -- 4.2 Spatial Information at Later Layers is Not Necessary -- 4.3 Patch-Wise Spatial Shuffle -- 4.4 Detection Results on VOC Datasets -- 5 Conclusion -- References -- Learning Monocular 3D Vehicle Detection Without 3D Bounding Box Labels -- 1 Introduction -- 1.1 Related Work -- 1.2 Contribution -- 2 Learning 3D Vehicle Detection Without 3D Bounding Box Labels -- 2.1 Shape Representation -- 2.2 Single-Image Network.

2.3 Loss Functions -- 3 Experiments -- 3.1 Ablation Study -- 3.2 Comparison with Non-Learning-Based Methods -- 4 Conclusion -- References -- Observer Dependent Lossy Image Compression -- 1 Introduction -- 2 Related Work -- 3 Method -- 4 Experiments -- 4.1 Results -- 5 Discussion -- References -- Adversarial Synthesis of Human Pose from Text -- 1 Introduction -- 2 Related Work -- 3 Generating Human Poses from Text -- 3.1 Feature Representation -- 3.2 Architecture -- 4 Dataset and Training -- 5 Experiments -- 6 Conclusion -- References -- Long-Term Anticipation of Activities with Cycle Consistency -- 1 Introduction -- 2 Related Work -- 3 The Anticipation Framework -- 3.1 Sequence-to-Sequence Model -- 3.2 Cycle Consistency -- 3.3 Recognition Module -- 3.4 Loss Function -- 4 Experiments -- 4.1 Ablation Analysis -- 4.2 End-to-End vs. Two-Step Approach -- 4.3 Comparison with the State-of-the-Art -- 5 Conclusion -- References -- Multi-stage Fusion for One-Click Segmentation -- 1 Introduction -- 2 Related Works -- 3 Proposed Method -- 3.1 Overview -- 3.2 Multi-stage Fusion -- 3.3 Transforming User Click -- 3.4 Implementation Details -- 4 Experimental Validation -- 4.1 Datasets -- 4.2 Tap-and-Shoot Segmentation -- 4.3 Interactive Image Segmentation -- 5 User Study -- 6 Conclusion -- References -- Neural Architecture Performance Prediction Using Graph Neural Networks -- 1 Introduction -- 2 Related Work -- 2.1 Neural Architecture Search -- 2.2 Neural Architecture Benchmark Datasets --



2.3 Performance Predictor for Neural Architectures -- 2.4 Graph Neural Networks -- 3 The Graph Encoder -- 3.1 Node-Level Propagation -- 3.2 Graph-Level Aggregation -- 4 Model Details -- 4.1 Message -- 4.2 Update -- 4.3 Aggregation -- 5 The NAS-Bench-101 Dataset -- 6 Experiments -- 6.1 Performance Prediction -- 6.2 Training Behaviour -- 6.3 Comparison to State of the Art.

7 Conclusion -- References -- Discovering Latent Classes for Semi-supervised Semantic Segmentation -- 1 Introduction -- 2 Related Work -- 3 Method -- 3.1 Semantic Branch -- 3.2 Latent Branch -- 3.3 Consistency Loss -- 3.4 Discriminator Network -- 4 Experiments -- 4.1 Implementation Details -- 4.2 Comparison with the State-of-the-Art -- 4.3 Ablation Experiments -- 5 Conclusion -- References -- Riemannian SOS-Polynomial Normalizing Flows -- 1 Introduction -- 2 Preliminaries -- 2.1 Normalizing Flows -- 2.2 Triangular Increasing Maps -- 3 SOS Polynomials and Triangular Increasing Maps -- 4 Riemannian Normalizing Flows -- 4.1 Riemannian Gradient -- 4.2 Exponential Parameterization -- 4.3 Application: Sampling from the Target Measure -- 5 Numerical Experiments -- 5.1 Implementation Details -- 5.2 Riemannian SOS-Polynomial Normalizing Flows -- 5.3 Exponential SOS-Polynomial Normalizing Flows -- 5.4 Comparison Between Riemannian and Exponential SOS Flow -- 6 Conclusion -- References -- Automated Water Segmentation and River Level Detection on Camera Images Using Transfer Learning -- 1 Introduction -- 2 Related Work -- 3 Transfer Learning for Water Segmentation -- 4 Water Segmentation Experiments -- 4.1 Protocol -- 4.2 Datasets -- 4.3 Performance Criteria -- 4.4 Results and Analysis -- 5 River Level Estimation Experiments -- 5.1 Datasets -- 5.2 Protocol -- 5.3 Results and Analysis -- 6 Conclusion -- References -- Does SGD Implicitly Optimize for Smoothness? -- 1 Introduction -- 2 Related Work -- 3 Does SGD Implicitly Optimize for Smoothness? -- 3.1 Measuring the Smoothness of a Function -- 3.2 First-Order Smoothness Measures -- 3.3 Second-Order Smoothness Measures -- 3.4 Smoothness Measures in Related Work -- 4 Experiments -- 4.1 Experimental Setup -- 4.2 Monotonicity -- 4.3 Optimality -- 5 Conclusion -- References.

Looking Outside the Box: The Role of Context in Random Forest Based Semantic Segmentation of PolSAR Images -- 1 Introduction -- 2 Projection-Based Random Forests -- 3 Experiments -- 3.1 Data -- 3.2 Polarimetric Scattering Vectors -- 3.3 Estimation of Polarimetric Sample Covariance Matrices -- 3.4 Polarimetric Sample Covariance Matrices -- 3.5 Summary -- 4 Conclusion and Future Work -- References -- Haar Wavelet Based Block Autoregressive Flows for Trajectories -- 1 Introduction -- 2 Related Work -- 3 Block Autoregressive Modeling of Trajectories -- 3.1 Conditional Normalizing Flows for Sequential Data -- 3.2 Haar Wavelet Based Invertible Transform -- 3.3 Haar Block Autoregressive Framework -- 4 Experiments -- 4.1 Stanford Drone -- 4.2 Intersection Drone -- 5 Conclusion -- References -- Center3D: Center-Based Monocular 3D Object Detection with Joint Depth Understanding -- 1 Introduction and Related Work -- 2 Center3D -- 2.1 CenterNet Baseline -- 2.2 Regressing 3D Center Points -- 2.3 Enriching Depth Information -- 2.4 Reference Area -- 3 Experiments -- 3.1 Implementation Details -- 3.2 Center3D -- 3.3 LID -- 3.4 DepJoint and Reference Area -- 3.5 Comparison to the State of the Art -- 4 Conclusion -- References -- Constellation Codebooks for Reliable Vehicle Localization -- 1 Introduction -- 2 Related Work -- 3 Codebook Generation -- 3.1 Definition of Uniqueness -- 3.2 Codeword Extraction -- 4 Localization Using Constellation Codebooks -- 4.1 Hash Table Generation -- 4.2 Feature Association -- 5 Experimental Results -- 5.1 Dataset -- 5.2 Localization Framework -- 5.3



Constellation Codebooks -- 5.4 Localization Results -- 6 Conclusions -- References -- Towards Bounding-Box Free Panoptic Segmentation -- 1 Introduction -- 2 Related Work -- 3 Panoptic Segmentation -- 3.1 Semantic Segmentation -- 3.2 Hough Voting -- 3.3 Watershed Energies.

3.4 Triplet Loss Network.

2.

Record Nr.

UNINA9910960662303321

Autore

Vohra Rakesh V

Titolo

Advanced mathematical economics / / Rakesh V. Vohra

Pubbl/distr/stampa

London ; ; New York, : Routledge, 2005

ISBN

9786610289943

9781135997021

1135997020

9780203799956

020379995X

9781280289941

1280289945

9780415700085

0415700086

9781135997038

1135997039

Edizione

[1st ed.]

Descrizione fisica

x, 194 p. : ill

Collana

Routledge advanced texts in economics and finance

Classificazione

83.03

Disciplina

330/.01/513

Soggetti

Economics, Mathematical

Programming (Mathematics)

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Bibliographic Level Mode of Issuance: Monograph

Nota di bibliografia

Includes bibliographical references and index.

Nota di contenuto

chapter 1 Things to know -- chapter 2 Feasibility -- chapter 3 Convex sets -- chapter 4 Linear programming -- chapter 5 Non-linear programming -- chapter 6 Fixed points -- chapter 7 Lattices and supermodularity -- chapter 8 Matroids.

Sommario/riassunto

This textbook presents students with all they need for advancing in



mathematical economics. Higher level undergraduates as well as postgraduate students in mathematical economics will find this book extremely useful.