1.

Record Nr.

UNISA996418280503316

Titolo

Engineering Psychology and Cognitive Ergonomics. Cognition and Design [[electronic resource] ] : 17th International Conference, EPCE 2020, Held as Part of the 22nd HCI International Conference, HCII 2020, Copenhagen, Denmark, July 19–24, 2020, Proceedings, Part II / / edited by Don Harris, Wen-Chin Li

Pubbl/distr/stampa

Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020

ISBN

3-030-49183-8

Edizione

[1st ed. 2020.]

Descrizione fisica

1 online resource (XXIII, 465 p. 194 illus., 146 illus. in color.)

Collana

Lecture Notes in Artificial Intelligence ; ; 12187

Disciplina

620.82

Soggetti

User interfaces (Computer systems)

Computer security

User Interfaces and Human Computer Interaction

Systems and Data Security

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Nota di contenuto

Mental Workload and Performance -- Human Physiology, Human Energy and Cognition -- Cognition and Design of Complex and Safety Critical Systems -- Human Factors in Human Autonomy Teaming and Intelligent Systems -- Cognitive Psychology in Aviation and Automotive. .

Sommario/riassunto

This book constitutes the proceedings of the 17th International Conference on Engineering Psychology and Cognitive Ergonomics, EPCE 2020, held as part of the 22nd International Conference, HCI International 2020, which took place in Copenhagen, Denmark, in July 2020. The total of 1439 papers and 238 posters included in the 37 HCII 2020 proceedings volumes was carefully reviewed and selected from 6326 submissions. EPCE 2020 includes a total of 60 regular papers; they were organized in topical sections named: mental workload and performance; human physiology, human energy and cognition; cognition and design of complex and safety critical systems; human factors in human autonomy teaming and intelligent systems; cognitive psychology in aviation and automotive. As a result of the Danish



Government's announcement, dated April 21, 2020, to ban all large events (above 500 participants) until September 1, 2020, the HCII 2020 conference was held virtually.

2.

Record Nr.

UNISA996503549503316

Autore

Fusco Nicola <1956->

Titolo

Mathematical analysis : functions of several real variables and applications / / Nicola Fusco, Paolo Marcellini, Carlo Sbordone

Pubbl/distr/stampa

Cham, Switzerland : , : Springer, , [2022]

©2022

ISBN

3-031-04151-8

Descrizione fisica

1 online resource (678 pages)

Collana

Unitext - Matematica per il 3 + 2 ; ; Volume 137

Disciplina

519.4

Soggetti

Numerical analysis

Anàlisi numèrica

Llibres electrònics

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Includes index.

Nota di contenuto

Intro -- Preface -- Contents -- 1 Sequences and Series of Functions -- 1.1 Sequences of Functions: Pointwise and Uniform Convergence -- 1.2 First Theorems on Uniform Convergence -- 1.3 Theorems on Interchanging Limits and Integrals or Derivatives -- 1.4 Uniform Convergence and Monotonicity -- 1.5 Series of Functions -- 1.6 Power Series -- 1.7 Taylor Series -- 1.8 Fourier Series -- 1.9 The Convergence of Fourier Series -- Appendix to Chap.1 -- 1.10 The Ascoli-Arzelà Theorem -- 1.11 The Weierstrass Approximation Theorem -- 1.12 Abel's Theorem on Power Series -- 2 Metric Spaces and Banach Spaces -- 2.1 Introduction -- 2.2 Metric Spaces -- 2.3 Sequences in a Metric Space: Continuous Functions -- 2.4 Vector Spaces: Linear Maps -- 2.5 The Vector Space ps: [/EMC pdfmark [/Subtype /Span /ActualText (double struck upper R Superscript bold italic n) /StPNE pdfmark [/StBMC pdfmarkRnps: [/EMC pdfmark [/StPop pdfmark [/StBMC pdfmark and Its Dual -- 2.6 Normed Vector Spaces -- 2.7 The Normed Vector Space ps: [/EMC pdfmark [/Subtype /Span



/ActualText (double struck upper R Superscript bold italic n) /StPNE pdfmark [/StBMC pdfmarkRnps: [/EMC pdfmark [/StPop pdfmark [/StBMC pdfmark -- 2.8 Complete Metric Spaces: Banach Spaces -- 2.9 Lipschitz Functions: The Contraction Theorem -- 2.10 Compact Sets: Continuous Functions on Compact Sets -- 2.11 Connected Open Subsets of ps: [/EMC pdfmark [/Subtype /Span /ActualText (double struck upper R Superscript bold italic n) /StPNE pdfmark [/StBMC pdfmarkRnps: [/EMC pdfmark [/StPop pdfmark [/StBMC pdfmark -- Appendix to Chap. 2 -- 2.12 Further Compactness Theorems: Generalised Weierstrass Theorem -- 3 Functions of Several Variables.

3.1 Round-Up of Topology in ps: [/EMC pdfmark [/Subtype /Span /ActualText (double struck upper R Superscript bold italic n) /StPNE pdfmark [/StBMC pdfmarkRnps: [/EMC pdfmark [/StPop pdfmark [/StBMC pdfmark -- 3.2 Limits and Continuity -- 3.3 Partial Derivatives -- 3.4 Higher Derivatives. Schwarz's Theorem -- 3.5 Gradient. Differentiability -- 3.6 Composite Functions -- 3.7 Directional Derivatives -- 3.8 Functions with Vanishing Gradient on Connected Sets -- 3.9 Homogeneous Functions -- 3.10 Functions Defined by Integrals -- 3.11 Taylor Formula and Higher-Order Differentials -- 3.12 Quadratic Forms. Definite, Semi-definite and Indefinite Matrices -- 3.13 Local Maxima and Minima -- 3.14 Vector-Valued Functions -- Appendix to Chap.3 -- 3.15 Convex Functions -- 3.16 Complements on Quadratic Forms -- 3.17 The Maximum Principle for Harmonic Functions -- 4 Ordinary Differential Equations -- 4.1 Introduction: The Initial Value Problem -- 4.2 Cauchy's Local Existence and Uniqueness Theorem -- 4.3 First Consequences of Cauchy's Theorem -- 4.4 The Global Existence and Uniqueness Theorem: Extension of Solutions -- 4.5 Solving First-Order ODEs in Normal Form -- 4.6 Solving First-Order ODEs Not in Normal Form -- 4.7 Solving Higher-Order Equations -- 4.8 Qualitative Study of Solutions -- Appendix to Chap. 4 -- 4.9 Peano's Theorem -- 5 Linear Differential Equations -- 5.1 General Properties -- 5.2 General Integral of Linear ODEs -- 5.3 The Method of Variation of Parameters -- 5.4 Bernoulli Equations -- 5.5 Homogeneous Equations with Constant Coefficients -- 5.6 Equations with Constant Coefficients and Special Right-Hand Side -- 5.7 Linear Euler Equations -- Appendix to Chap.5 -- 5.8 Boundary Value Problems -- 5.9 Linear Systems -- 6 Curves and Integrals Along Curves -- 6.1 Regular Curves -- 6.2 Oriented Curves -- 6.3 The Length of a Curve.

6.4 The Integral of a Function Along a Curve -- 6.5 The Curvature of a Plane Curve -- 6.6 The Cross Product in ps: [/EMC pdfmark [/Subtype /Span /ActualText (double struck upper R cubed) /StPNE pdfmark [/StBMC pdfmarkR3ps: [/EMC pdfmark [/StPop pdfmark [/StBMC pdfmark -- 6.7 Biregular Curves in ps: [/EMC pdfmark [/Subtype /Span /ActualText (double struck upper R cubed) /StPNE pdfmark [/StBMC pdfmarkR3ps: [/EMC pdfmark [/StPop pdfmark [/StBMC pdfmark: Curvature -- Appendix to Chap.6 -- 6.8 Curves in ps: [/EMC pdfmark [/Subtype /Span /ActualText (double struck upper R cubed) /StPNE pdfmark [/StBMC pdfmarkR3ps: [/EMC pdfmark [/StPop pdfmark [/StBMC pdfmark: Torsion, Frenet Frame -- 7 Differential One-Forms -- 7.1 Vector Fields. Work. Conservative Fields -- 7.2 Differential 1-Forms. Line Integrals -- 7.3 Exact 1-Forms -- 7.4 Exact 1-Forms on the Plane. Simply Connected Open Sets in ps: [/EMC pdfmark [/Subtype /Span /ActualText (double struck upper R squared) /StPNE pdfmark [/StBMC pdfmarkR2ps: [/EMC pdfmark [/StPop pdfmark [/StBMC pdfmark -- 7.5 One-Forms in Space. Irrotational Vector Fields -- Appendix to Chap.7 -- 7.6 Simply Connected Open Sets in ps: [/EMC pdfmark [/Subtype /Span /ActualText (double struck upper R



Superscript n) /StPNE pdfmark [/StBMC pdfmarkRnps: [/EMC pdfmark [/StPop pdfmark [/StBMC pdfmark and Exact 1-Forms -- 8 Multiple Integrals -- 8.1 Double Integrals on Normal Domains -- 8.2 Reduction Formulas for Double Integrals -- 8.3 Gauss-Green Formulas. The Divergence Theorem. Stokes's Formula -- 8.4 Variable Change in Double Integrals -- 8.5 Triple Integrals -- 8.6 Peano-Jordan Measurable Subsets of ps: [/EMC pdfmark [/Subtype /Span /ActualText (double struck upper R Superscript bold italic n) /StPNE pdfmark [/StBMC pdfmarkRnps: [/EMC pdfmark [/StPop pdfmark [/StBMC pdfmark.

8.7 The Riemann Integral in ps: [/EMC pdfmark [/Subtype /Span /ActualText (double struck upper R Superscript bold italic n) /StPNE pdfmark [/StBMC pdfmarkRnps: [/EMC pdfmark [/StPop pdfmark [/StBMC pdfmark -- 8.8 Properties of Riemann Integrals -- 8.9 Summable Functions -- Appendix to Chap.8 -- 8.10 Jensen's Inequality -- 8.11 The Gamma Function. The Measure of the Unit Ball in ps: [/EMC pdfmark [/Subtype /Span /ActualText (double struck upper R Superscript bold italic n) /StPNE pdfmark [/StBMC pdfmarkRnps: [/EMC pdfmark [/StPop pdfmark [/StBMC pdfmark -- 9 The Lebesgue Integral -- 9.1 Introduction -- 9.2 Pluri-Intervals. Open Sets. Compact Sets -- 9.3 Bounded Measurable Sets -- 9.4 Unbounded Measurable Sets -- 9.5 Measurable Functions -- 9.6 The Lebesgue Integral. Interchanging Limits and Integrals -- 9.7 Measure and Integration on Product Spaces -- 9.8 Changing Variables in Multiple Integrals -- Appendix to Chap.9 -- 9.9 Lp Spaces -- 9.10 Differentiability of Monotone Functions -- 9.11 Functions with Bounded Variation -- 9.12 Absolutely Continuous Functions -- 9.13 The Indefinite Integral in Lebesgue's Theory -- 10 Surfaces and Surface Integrals -- 10.1 Regular Surfaces -- 10.2 Local Coordinates and Change of Parameters -- 10.3 The Tangent Plane and the Unit Normal -- 10.4 The Area of a Surface -- 10.5 Orientable Surfaces: Surfaces with Boundary -- 10.6 Surface Integrals -- 10.7 Stokes's Formula and the Divergence Theorem -- 11 Implicit Functions -- 11.1 The Implicit Function Theorem for Equations -- 11.2 The Implicit Function Theorem for Systems -- 11.3 Local and Global Invertibility -- 11.4 Constrained Maxima and Minima. Lagrange Multipliers -- Appendix to Chap.11 -- 11.5 Singular Points of a Plane Curve -- 12 Manifolds in Rn and k-Forms.

12.1 k-Dimensional Manifolds in ps: [/EMC pdfmark [/Subtype /Span /ActualText (double struck upper R Superscript n) /StPNE pdfmark [/StBMC pdfmarkRnps: [/EMC pdfmark [/StPop pdfmark [/StBMC pdfmark -- 12.2 The Tangent Space and the Normal Space of a Manifold -- 12.3 Measure and Integration on k-Submanifolds in ps: [/EMC pdfmark [/Subtype /Span /ActualText (double struck upper R Superscript n) /StPNE pdfmark [/StBMC pdfmarkRnps: [/EMC pdfmark [/StPop pdfmark [/StBMC pdfmark -- 12.4 The Divergence Theorem -- 12.5 Alternating Forms -- 12.6 Differential k-Forms -- 12.7 Orientable Manifolds. Integration of k-Forms on Manifolds -- 12.8 Manifolds with Boundary. Stokes's Formula -- Appendix to Chap.12 -- 12.9 Exact and Closed Differential Forms -- Index.