1.

Record Nr.

UNISA996417390303316

Titolo

California Energy & Climate Report

Pubbl/distr/stampa

California, : Inside Washington Publishers

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Periodico

2.

Record Nr.

UNINA9911019903203321

Autore

Belytschko Ted

Titolo

Meshfree and Particle Methods : Fundamentals and Applications

Pubbl/distr/stampa

Newark : , : John Wiley & Sons, Incorporated, , 2023

©2024

ISBN

9781119811138

1119811139

9781119811145

1119811147

Edizione

[1st ed.]

Descrizione fisica

1 online resource (349 pages)

Altri autori (Persone)

ChenJ. S

HillmanMichael

Disciplina

518.2

Soggetti

Meshfree methods (Numerical analysis)

Particle methods (Numerical analysis)

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Nota di contenuto

Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Glossary of Notation -- Chapter 1 Introduction to Meshfree and Particle Methods --   1.1 Definition of Meshfree Method --   1.2 Key Approximation Characteristics --   1.3 Meshfree Computational Model --   1.4 A Demonstration of Meshfree Analysis --   1.5 Classes of Meshfree Methods --   1.6 Applications of Meshfree Methods --   References -- Chapter 2 Preliminaries: Strong and Weak Forms of



Diffusion, Elasticity, and Solid Continua --   2.1 Diffusion Equation --     2.1.1 Strong Form of the Diffusion Equation --     2.1.2 The Variational Principle for the Diffusion Equation --       2.1.2.1 The Standard Variational Principle --       2.1.2.2 The Variational Equation --       2.1.2.3 Equivalence of the Variational Equation and the Strong Form --     2.1.3 Constrained Variational Principles for the Diffusion Equation --       2.1.3.1 The Penalty Method --       2.1.3.2 The Lagrange Multiplier Method --       2.1.3.3 Nitsche's Method --     2.1.4 Weak Form of the Diffusion Equation by the Method of Weighted Residuals --   2.2 Elasticity --     2.2.1 Strong Form of Elasticity --     2.2.2 The Variational Principle for Elasticity --     2.2.3 Constrained Variational Principles for Elasticity

Sommario/riassunto

This book provides an in-depth exploration of meshfree and particle methods, which are advanced numerical techniques used in computational mechanics. It covers the fundamental principles and applications of these methods, including the construction and analysis of meshfree computational models. The authors discuss various approximation techniques such as the Moving Least Squares (MLS) and Reproducing Kernel approximations, and their applications in solving partial differential equations. The book also addresses the challenges of numerical integration and stability in meshfree methods, presenting solutions like nodal integration and stabilization techniques. Intended for researchers and practitioners in numerical analysis and computational mechanics, this text serves as a comprehensive resource for understanding and implementing meshfree and particle methods.