1.

Record Nr.

UNISA996396775903316

Autore

Taylor John <1580-1653.>

Titolo

Cornu-copia, or, Roome for a ram-head [[electronic resource] ] : wherein is described the dignity of the ram-head above the round-head or rattle-head

Pubbl/distr/stampa

London, : Printed for John Reynolds, 1642

Descrizione fisica

[7] p

Soggetti

Roundheads

Great Britain Religion 17th century

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Attributed to John Taylor by Wing, Charles A. Stonehill, Jr.

Illustrated t.p.

Reproduction of original in Thomason Collection, British Library.

Sommario/riassunto

eebo-0158



2.

Record Nr.

UNISA996511862703316

Autore

Tao Terence

Titolo

Analysis I / / Terence Tao

Pubbl/distr/stampa

Singapore : , : Springer, , 2022

ISBN

981-19-7261-3

9789811972614

9788195196197

Edizione

[Fourth edition.]

Descrizione fisica

1 online resource (301 pages)

Collana

Texts and readings in mathematics ; ; 37

Disciplina

515

Soggetti

Mathematical analysis

Anàlisi matemàtica

Llibres electrònics

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Nota di contenuto

Chapter 1. Introduction -- Chapter 2. Starting at the beginning: the natural numbers -- Chapter 3. Set theory -- Chapter 4. Integers and rationals -- Chapter 5. The real numbers -- Chapter 6. Limits of sequences -- Chapter 7. Series -- Chapter 8. Infinite sets -- Chapter 9. Continuous functions on R -- Chapter 10. Differentiation of functions -- Chapter 11. The Riemann integral. .

Sommario/riassunto

This is the first book of a two-volume textbook on real analysis. Both the volumes—Analysis I and Analysis II—are intended for honors undergraduates who have already been exposed to calculus. The emphasis is on rigor and foundations. The material starts at the very beginning—the construction of number systems and set theory (Analysis I, Chaps. 1–5), then on to the basics of analysis such as limits, series, continuity, differentiation, and Riemann integration (Analysis I, Chaps. 6–11 on Euclidean spaces, and Analysis II, Chaps. 1–3 on metric spaces), through power series, several variable calculus, and Fourier analysis (Analysis II, Chaps. 4–6), and finally to the Lebesgue integral (Analysis II, Chaps. 7–8). There are appendices on mathematical logic and the decimal system. The entire text (omitting some less central topics) is in two quarters of twenty-five to thirty lectures each.