| |
|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNISA996396751303316 |
|
|
Autore |
Cox Robert -1655 |
|
|
Titolo |
Acteon & Diana [[electronic resource] ] : with a pastoral storie of the nimph Oenone followed by the several conceited humours of Bumpkin the huntsman, Hobbinal the shepherd, Singing Simpkin, and John Swabber the seaman / / by Rob. Cox, acted at the Red Bull with great applause |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
London, : Printed for Edward Archer ..., 1656 |
|
|
|
|
|
|
|
Edizione |
[The second edition, with the addition of Simpleton the smith, not before extant.] |
|
|
|
|
|
|
|
Descrizione fisica |
|
|
|
|
|
|
Soggetti |
|
One-act plays |
English drama |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
Reproduction of original in Huntington Library. |
|
|
|
|
|
|
Sommario/riassunto |
|
|
|
|
|
|
|
|
|
|
|
|
|
2. |
Record Nr. |
UNINA9910957044903321 |
|
|
Autore |
Heidersdorf Thorsten |
|
|
Titolo |
Cohomological Tensor Functors on Representations of the General Linear Supergroup |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Providence : , : American Mathematical Society, , 2021 |
|
©2021 |
|
|
|
|
|
|
|
|
|
ISBN |
|
|
|
|
|
|
|
|
Edizione |
[1st ed.] |
|
|
|
|
|
Descrizione fisica |
|
1 online resource (118 pages) |
|
|
|
|
|
|
Collana |
|
Memoirs of the American Mathematical Society ; ; v.270 |
|
|
|
|
|
|
Classificazione |
|
17B1017B2017B5518D1020G05 |
|
|
|
|
|
|
Altri autori (Persone) |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Tensor algebra |
Tensor products |
Nonassociative rings and algebras -- Lie algebras and Lie superalgebras -- Representations, algebraic theory (weights) |
Nonassociative rings and algebras -- Lie algebras and Lie superalgebras -- Simple, semisimple, reductive (super)algebras |
Nonassociative rings and algebras -- Lie algebras and Lie superalgebras -- Homological methods in Lie (super)algebras |
Category theory; homological algebra -- Categories with structure -- Monoidal categories (= multiplicative categories), symmetric monoidal categories, braided categories |
Group theory and generalizations -- Linear algebraic groups and related topics -- Representation theory |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references. |
|
|
|
|
|
|
Nota di contenuto |
|
Cover -- Title page -- Chapter 1. Introduction -- Chapter 2. Cohomological Tensor Functors -- 2.1. The superlinear groups -- 2.2. The Duflo-Serganova functor -- 2.3. Cohomology functors -- 2.4. Support varieties and the kernel of -- 2.5. The tensor functor -- 2.6. The relation between ( ) and ( ) -- 2.7. Hodge decomposition -- 2.8. The case > -- 1 -- 2.9. Boundary maps -- 2.10. Highest weight modules -- 2.11. The Casimir -- Chapter 3. The Main Theorem and its Proof -- 3.1. The language of Brundan and Stroppel -- 3.2. On segments, sectors and plots -- 3.3. Mixed tensors and ground states -- 3.4. Sign normalizations -- 3.5. The main theorem -- 3.6. Strategy |
|
|
|
|
|
|
|
|
|
|
|
of the proof -- 3.7. Modules of Loewy length 3 -- 3.8. Inductive Control over -- 3.9. Moves -- Chapter 4. Consequences of the Main Theorem -- 4.1. Tannaka Duals -- 4.2. Cohomology I -- 4.3. Cohomology II -- 4.4. Cohomology III -- 4.5. The forest formula -- 4.6. -module structure on the cohomology ^{∙}_{ _{ }} -- 4.7. Primitive elements of ^{∙}_{ _{ }}( (1)) -- 4.8. Kac module of 1 -- 4.9. Strict morphisms -- 4.10. The module (( )ⁿ) -- 4.11. The basic hook representations -- Bibliography -- Back Cover. |
|
|
|
|
|
|
Sommario/riassunto |
|
"We define and study cohomological tensor functors from the category Tn of finite-dimensional representations of the supergroup for the image of an arbitrary irreducible representation. In particular DS(L) is semisimple and multiplicity free. We derive a few applications of this theorem such as the degeneration of certain spectral sequences and a formula for the modified superdimension of an irreducible representation"-- |
|
|
|
|
|
|
|
| |