| |
|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNISA996392438503316 |
|
|
Titolo |
A representation from his Excellency Sir Thomas Fairfax, and the generall Councel of the Army. Expressing the desires of the Army in relation to themselves as souldiers; in which they desire satisfaction before disbanding [[electronic resource] ] : Tendred to the Right Honourable the Commissioners of Parliament residing with the Army, Sept. 21. to be by them represented to the Parliament. By the appointment of his Excellency Sir Thomas Fairfax and the generall councell of the Army. John Rushworth Secret |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
London : , : Printed for John Partridge, in Black-fryers at the gate going into Carter-lane, 1647 |
|
|
|
|
|
|
|
|
|
Descrizione fisica |
|
|
|
|
|
|
Altri autori (Persone) |
|
FairfaxThomas Fairfax, Baron, <1612-1671.> |
|
|
|
|
|
|
Soggetti |
|
Great Britain History Civil War, 1642-1649 Early works to 1800 |
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
Annotation on Thomason copy: "7ber [i.e. September] 24". |
In this edition, line 14 on title page ends: Tho-. |
Reproduction of the original in the British Library. |
|
|
|
|
|
|
|
|
Sommario/riassunto |
|
|
|
|
|
|
|
|
|
|
|
|
|
2. |
Record Nr. |
UNINA9910811760603321 |
|
|
Autore |
Palais Richard S. |
|
|
Titolo |
A global formulation of the Lie theory of transportation groups / / Richard S. Palais |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Providence, R.I. : , : American Mathematical Society, , [1957] |
|
©1957 |
|
|
|
|
|
|
|
|
|
ISBN |
|
|
|
|
|
|
Descrizione fisica |
|
1 online resource (130 pages) |
|
|
|
|
|
|
Collana |
|
Memoirs of the American Mathematical Society ; ; number 22 |
|
|
|
|
|
|
Soggetti |
|
Lie groups |
Transformations (Mathematics) |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references and index. |
|
|
|
|
|
|
Nota di contenuto |
|
""Contents""; ""Preface""; ""Acknowledgments""; ""Chapter I: QUOTIENT MANIFOLDS DEFINED BY FOLIATIONS""; ""1. Differentiable Manifolds""; ""2. Foliations""; ""3. The Continuation Theorem""; ""4. Regularity""; ""5. Quotient Manifolds""; ""6. Factorization of Mappings""; ""7. Projection-like Mappings""; ""8. The Uniqueness Theorem""; ""9. Products of Quotient Manifolds""; ""Chapter II: LOCAL AND INFINITESIMAL TRANSFORMATION GROUPS""; ""1. Notation""; ""2. Elementary Definitions""; ""3. 'Factoring' a Transformation Group""; ""4. The Infinitesimal Graph""; ""5. The Local Existence Theorem"" |
""6. The Uniqueness Theorem""""7. The Existence Theorem""; ""Chapter III: GLOBALIZABLE INFINITESIMAL TRANSFORMATION GROUPS""; ""1. Globalizations""; ""2. Univalent Infinitesimal Transformation Groups""; ""3. Maximum Local Transformation Groups""; ""4. The Principal Theorem""; ""5. Proper Infinitesimal Transformation Groups""; ""6. Uniform Infinitesimal Transformation Groups""; ""7. R-Transformation Groups""; ""8. The Need for Non-Hausdorff Manifolds""; ""9. Can Theorem XX Be Generalized?""; ""Chapter IV: LIE TRANSFORMATION GROUPS""; ""1. Two Theorems on Lie Groups"" |
""2. Infinitesimal Groups"" ""3. Connected Lie Transformation Groups""; ""4. Lie Transformation Groups""; ""5. Tensor Structures and Their Automorphism Groups""; ""Appendix to Chapter IV""; ""1. Compact-Open Topology""; ""2. Making a Topology Locally Arcwise Connected""; |
|
|
|
|
|
|
|
|
|
|
""3. The Modified Compact-Open Topology""; ""4. Weakening the Topology of a Lie Group""; ""Terminological Index""; ""References""; ""Fixed Notations"" |
|
|
|
|
|
| |