1.

Record Nr.

UNISA996392438503316

Titolo

A representation from his Excellency Sir Thomas Fairfax, and the generall Councel of the Army. Expressing the desires of the Army in relation to themselves as souldiers; in which they desire satisfaction before disbanding [[electronic resource] ] : Tendred to the Right Honourable the Commissioners of Parliament residing with the Army, Sept. 21. to be by them represented to the Parliament. By the appointment of his Excellency Sir Thomas Fairfax and the generall councell of the Army. John Rushworth Secret

Pubbl/distr/stampa

London : , : Printed for John Partridge, in Black-fryers at the gate going into Carter-lane, 1647

Descrizione fisica

[2], 6 p

Altri autori (Persone)

FairfaxThomas Fairfax, Baron,  <1612-1671.>

Soggetti

Great Britain History Civil War, 1642-1649 Early works to 1800

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Annotation on Thomason copy: "7ber [i.e. September] 24".

In this edition, line 14 on title page ends: Tho-.

Reproduction of the original in the British Library.

Sommario/riassunto

eebo-0018



2.

Record Nr.

UNINA9910811760603321

Autore

Palais Richard S.

Titolo

A global formulation of the Lie theory of transportation groups / / Richard S. Palais

Pubbl/distr/stampa

Providence, R.I. : , : American Mathematical Society, , [1957]

©1957

ISBN

0-8218-9964-3

Descrizione fisica

1 online resource (130 pages)

Collana

Memoirs of the American Mathematical Society ; ; number 22

Soggetti

Lie groups

Transformations (Mathematics)

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Cover title.

Nota di bibliografia

Includes bibliographical references and index.

Nota di contenuto

""Contents""; ""Preface""; ""Acknowledgments""; ""Chapter I: QUOTIENT MANIFOLDS DEFINED BY FOLIATIONS""; ""1. Differentiable Manifolds""; ""2. Foliations""; ""3. The Continuation Theorem""; ""4. Regularity""; ""5. Quotient Manifolds""; ""6. Factorization of Mappings""; ""7. Projection-like Mappings""; ""8. The Uniqueness Theorem""; ""9. Products of Quotient Manifolds""; ""Chapter II: LOCAL AND INFINITESIMAL TRANSFORMATION GROUPS""; ""1. Notation""; ""2. Elementary Definitions""; ""3. 'Factoring' a Transformation Group""; ""4. The Infinitesimal Graph""; ""5. The Local Existence Theorem""

""6. The Uniqueness Theorem""""7. The Existence Theorem""; ""Chapter III: GLOBALIZABLE INFINITESIMAL TRANSFORMATION GROUPS""; ""1. Globalizations""; ""2. Univalent Infinitesimal Transformation Groups""; ""3. Maximum Local Transformation Groups""; ""4. The Principal Theorem""; ""5. Proper Infinitesimal Transformation Groups""; ""6. Uniform Infinitesimal Transformation Groups""; ""7. R-Transformation Groups""; ""8. The Need for Non-Hausdorff Manifolds""; ""9. Can Theorem XX Be Generalized?""; ""Chapter IV: LIE TRANSFORMATION GROUPS""; ""1. Two Theorems on Lie Groups""

""2. Infinitesimal Groups"" ""3. Connected Lie Transformation Groups""; ""4. Lie Transformation Groups""; ""5. Tensor Structures and Their Automorphism Groups""; ""Appendix to Chapter IV""; ""1. Compact-Open Topology""; ""2. Making a Topology Locally Arcwise Connected"";



""3. The Modified Compact-Open Topology""; ""4. Weakening the Topology of a Lie Group""; ""Terminological Index""; ""References""; ""Fixed Notations""