1.

Record Nr.

UNISA996390872703316

Autore

Boaistuau Pierre <d. 1566.>

Titolo

Le theatre du monde [[electronic resource] ] : ou il est faict vn ample discours des miseres humaines: composé en Latin par P. Boaystuau, surnommé Launay, puis traduit par luy-mesme en françois. Auec vn brief discours de l'excellence & dignité de l'homme

Pubbl/distr/stampa

A Londres, : De l'imprimerie de Geor. Bishop, M.D.XCV. [1595]

Edizione

[Nouvellement imprimé:]

Descrizione fisica

190, [2] p

Altri autori (Persone)

HollybandClaudius <16th cent.>

Soggetti

Human beings

Lingua di pubblicazione

Francese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

The last leaf is blank.

Reproduction of the original in the British Library.

Sommario/riassunto

eebo-0018



2.

Record Nr.

UNISA996466508503316

Autore

Graf Siegfried

Titolo

Foundations of Quantization for Probability Distributions [[electronic resource] /] / by Siegfried Graf, Harald Luschgy

Pubbl/distr/stampa

Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2000

ISBN

3-540-45577-9

Edizione

[1st ed. 2000.]

Descrizione fisica

1 online resource (X, 230 p.)

Collana

Lecture Notes in Mathematics, , 0075-8434 ; ; 1730

Disciplina

519.24

Soggetti

Probabilities

Statistics 

Pattern recognition

Operations research

Decision making

Electrical engineering

Probability Theory and Stochastic Processes

Statistical Theory and Methods

Pattern Recognition

Operations Research/Decision Theory

Communications Engineering, Networks

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Bibliographic Level Mode of Issuance: Monograph

Nota di bibliografia

Includes bibliographical references (pages [215]-224) and index.

Nota di contenuto

I. General properties of the quantization for probability distributions: Voronoi partitions. Centers and moments of probability distributions. The quantization problem. Basic properties of optimal quantizers. Uniqueness and optimality in one dimension -- II. Asymptotic quantization for nonsingular probability distributions: Asymptotics for the quantization error. Asymptotically optimal quantizers. Regular quantizers and quantization coefficients. Random quantizers and quantization coefficients. Asymptotics for the covering radius -- III. Asymptotic quantization for singular probability distributions: The quantization dimension. Regular sets and measures of dimension D. Rectifiable curves. Self-similar sets and measures.



Sommario/riassunto

Due to the rapidly increasing need for methods of data compression, quantization has become a flourishing field in signal and image processing and information theory. The same techniques are also used in statistics (cluster analysis), pattern recognition, and operations research (optimal location of service centers). The book gives the first mathematically rigorous account of the fundamental theory underlying these applications. The emphasis is on the asymptotics of quantization errors for absolutely continuous and special classes of singular probabilities (surface measures, self-similar measures) presenting some new results for the first time. Written for researchers and graduate students in probability theory the monograph is of potential interest to all people working in the disciplines mentioned above.