1.

Record Nr.

UNISA996389377203316

Autore

Carpenter Nathanael <1589-1628?>

Titolo

Achitophel, or the picture of a wicked polititian [[electronic resource] ] : Divided into three parts. A treatise presented heretofore in three sermons to the Vniversity of Oxford and now published. By Nath. Carpenter B.D. & fellow of Excet. Coll. in Oxford

Pubbl/distr/stampa

Oxford, : Printed by Leonard Lichfield for Mathew Hunt, 1640

Descrizione fisica

[8], 177, [3] p

Soggetti

Ireland Politics and government 17th century Early works to 1800

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

A parable on Irish politics of uncertain reference.

The last leaf is blank.

Reproduction of the originals in Cambridge University Library and the British Library.

Appears at reel 1626 (Cambridge University Library copy) and at reel 1657 (British Library copy).

Sommario/riassunto

eebo-0018



2.

Record Nr.

UNISA996464434703316

Titolo

Information and communications security . Part 1 : 23rd international conference, ICICS 2021, Chongqing, China, November 19-21, 2021 : proceedings. / / Debin Gao [and three others], editors

Pubbl/distr/stampa

Cham, Switzerland : , : Springer, , [2021]

©2021

ISBN

3-030-86890-7

Descrizione fisica

1 online resource (496 pages)

Collana

Lecture Notes in Computer Science ; ; v.12918

Disciplina

001.5436

Soggetti

Cryptography

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Includes index.

Nota di contenuto

Intro -- Preface -- Organization -- Keynotes -- Engineering Trustworthy Data-Centric Software: Intelligent Software Engineering and Beyond -- Securing Smart Cars - Opportunities and Challenges -- Contents - Part I -- Contents - Part II -- Blockchain and Federated Learning -- The Golden Snitch: A Byzantine Fault Tolerant Protocol with Activity -- 1 Introduction -- 2 Preliminaries -- 3 Protocol Overview -- 4 The Golden Snitch Protocol -- 4.1 Setup -- 4.2 Replicas Vote in an Honest Round -- 4.3 Replicas Recover in a Timeout Round -- 4.4 A Leader Proposes Proposal -- 5 Performance -- 5.1 Fault-Free Cases -- 5.2 Normal Cases -- 6 Discussion and Conclusion -- A  Analysis of Correctness -- A.1  Safety -- A.2  Liveness -- References -- Rectifying Administrated ERC20 Tokens -- 1 Introduction -- 2 Background -- 3 Administrated ERC20 Patterns -- 3.1 Self-destruction -- 3.2 Deprecation -- 3.3 Change of Address -- 3.4 Change of Parameters -- 3.5 Minting and Burning -- 4 Administrated Tokens in the Wild -- 4.1 Data Set -- 4.2 ERC20 Administration Features -- 4.3 Classifier Evaluation and Model Selection -- 4.4 Implementation and Evaluation of the Analysis Workflow -- 4.5 Results -- 5 SafelyAdministrated Library -- 5.1 Deferred Maintenance -- 5.2 Contract Board of Trustees -- 5.3 Safe Pause -- 5.4 Implementation -- 5.5 Limitation -- 6 Related Work -- 7 Conclusion -- References -- Moat: Model Agnostic Defense against Targeted Poisoning Attacks in Federated Learning -- 1



Introduction -- 2 Related Work -- 3 Federated Learning and Threat Model -- 3.1 Federated Learning -- 3.2 Threat Model -- 4 Moat: The Proposed Defense Technique -- 4.1 Overview -- 4.2 Algorithm -- 5 Experiment and Result Analysis -- 5.1 Results -- 6 Discussion -- 7 Conclusion -- A  SHAP Analysis -- B  Results on Distributed Attack -- References -- Malware Analysis and Detection.

Certified Malware in South Korea: A Localized Study of Breaches of Trust in Code-Signing PKI Ecosystem -- 1 Introduction -- 2 Background and Motivation -- 2.1 Overview of the Code-Signing PKI -- 2.2 Code-Signing Process -- 2.3 Revocation -- 2.4 Motivation -- 3 Data Collection -- 3.1 Data Source -- 3.2 System Overview -- 3.3 Binary Labeling -- 4 Code-Signing PKI Abuse in Korea -- 4.1 Abusers -- 4.2 Issuer -- 4.3 Certificate Life-Cycle -- 5 Related Work -- 6 Conclusion -- A  Appendix -- References -- GAN-Based Adversarial Patch for Malware C2 Traffic to Bypass DL Detector -- 1 Introduction -- 2 Background and Related Work -- 2.1 Background-Malware Traffic Detection -- 2.2 Related Work-Malware Traffic Evasion -- 3 Method -- 3.1 Thread Model -- 3.2 Framework -- 3.3 Generation Module - WGAN -- 3.4 Transfer Module-Transfer Learning -- 4 Experiment -- 4.1 Dataset -- 4.2 Hyperparameters -- 4.3 Detector -- 5 Results -- 5.1 Evasion Performance -- 5.2 Time Performance -- 6 Real-Life Experiment -- 6.1 Custom Malware -- 6.2 Impact on Malware -- 7 Conclusion -- References -- Analyzing the Security of OTP 2FA in the Face of Malicious Terminals -- 1 Introduction -- 2 Background -- 2.1 One Time Pin Based 2FA -- 2.2 Malware on Terminal -- 3 Our Attack: Overview and Design -- 3.1 Attack Overview -- 3.2 Attack Assumptions -- 3.3 Attack Implementations Vs. Other Known Attack -- 3.4 Attack Components -- 3.5 Internal Attack -- 3.6 Remote Attack -- 4 Implementation -- 4.1 Attack Components of Internal Attack -- 4.2 Attack Components of Remote Attack -- 5 Evaluation -- 5.1 Evaluation of Commercially Deployed OTP-2FA Schemes in the Face of the Attack -- 5.2 Detectability from Terminal and 2FA Device -- 5.3 Detectability from Service -- 5.4 Detectability in the Presence of Anti-Malware Program -- 5.5 Detectability During Attack Module Deployment -- 6 Discussion and Future Work.

6.1 Attack Summary -- 6.2 General Discussion -- 6.3 Mitigation Strategy -- 6.4 Limitations and Future Work -- 7 Related Work -- 8 Conclusion -- A  Appendix -- A.1  Tables -- A.2  Other snapshots -- References -- IoT Security -- Disappeared Face: A Physical Adversarial Attack Method on Black-Box Face Detection Models -- 1 Introduction -- 2 Related Works -- 2.1 Adversarial Attacks on Face Recognition -- 2.2 Adversarial Attacks on Face Detection -- 3 Our Proposed Method -- 3.1 Configure Input Images -- 3.2 Search for Face Detection Models' Public Weakness -- 3.3 Update the Adversarial Patches -- 4 Experiments and Result Analysis -- 4.1 Experiment Settings -- 4.2 Escape Experiments in the Real World -- 4.3 Contrast Experiments -- 4.4 Ablation Experiments -- 5 Conclusion -- References -- HIAWare: Speculate Handwriting on Mobile Devices with Built-In Sensors -- 1 Introduction -- 2 Preliminaries -- 2.1 Targeted Vulnerable Apps -- 2.2 Motion Sensor Selection -- 2.3 Threat Model -- 3 HIAWare Design -- 3.1 Handwriting Detection -- 3.2 Sensor Data Capture -- 3.3 Preprocessing -- 3.4 Posture-Aware Analysis -- 3.5 Character Restoration -- 4 Algorithm Details -- 4.1 MCFAR Algorithm -- 4.2 User-Independent Posture-Aware Algorithm -- 5 Performance Evaluation -- 5.1 Experiment Setup -- 5.2 Performance of Segment Detection -- 5.3 Performance of Different Holding Postures -- 5.4 Performance of Different Devices -- 5.5 Performance of Different Inputs -- 5.6 Discussions -- 6 Related Work -- 7 Conclusions --



References -- Studies of Keyboard Patterns in Passwords: Recognition, Characteristics and Strength Evolution -- 1 Introduction -- 2 General Method of Keyboard Pattern Recognition -- 2.1 Recognition Method Design -- 2.2 Recognition Results -- 3 Characteristic Analyses of Keyboard Patterns -- 3.1 Length Distribution of Keyboard Patterns.

3.2 Top Popular Keyboard Patterns -- 3.3 Common Structures of Keyboard Patterns -- 3.4 Characters' Frequency in Keyboard Patterns -- 3.5 Frequency Distribution of Keyboard Patterns -- 4 Security Impacts of Keyboard-Pattern-Based Passwords -- 4.1 Method Design -- 4.2 Evaluation Results -- 5 Conclusions and Suggestions -- References -- CNN-Based Continuous Authentication on Smartphones with Auto Augmentation Search -- 1 Introduction -- 2 Related Work -- 2.1 Continuous Authentication System -- 2.2 Time-Series Data Augmentation Method -- 2.3 Auto Augmentation Method -- 3 CAuSe Architecture -- 3.1 Data Collection and Preprocessing -- 3.2 Auto Augmentation Search -- 3.3 Feature Extraction -- 3.4 Authentication with LOF Classifier -- 4 Performance Evaluation -- 4.1 Experimental Settings -- 4.2 Feature Number and Classifier Parameter -- 4.3 Auto Augmentation Search -- 4.4 Optimal Strategy -- 4.5 Comparison with Representative Schemes -- 5 Conclusion -- References -- Generating Adversarial Point Clouds on Multi-modal Fusion Based 3D Object Detection Model -- 1 Introduction -- 2 Related Work -- 2.1 Multi-modal Fusion -- 2.2 Adversarial Point Clouds -- 2.3 Attacks on 3D Object Detection -- 3 Robustness Analysis -- 4 Generating Adversarial Point Clouds -- 4.1 Problem Definition -- 4.2 Input Perturbation -- 4.3 Objective Function -- 4.4 Attack Method -- 5 Experiments -- 5.1 Experiment Setup -- 5.2 Results and Discussion -- 6 Conclusion -- References -- Source Identification from In-Vehicle CAN-FD Signaling: What Can We Expect? -- 1 Introduction -- 2 Background and Related Work -- 2.1 Controller Area Network -- 2.2 Comparing CAN-FD with CAN -- 2.3 Related Work -- 3 Signaling and Ringing -- 3.1 ECUs' Voltage Output Behavior -- 3.2 Ringing and Its Intensity -- 4 System Model -- 4.1 Threat Models -- 4.2 Signal Acquisition and Preprocessing -- 4.3 Feature Extraction.

4.4 Identifying ECUs -- 5 Source Identification and Intrusion Detection -- 5.1 Experiment Setup -- 5.2 Sender Identification -- 5.3 Detecting Known/Unknown ECUs -- 6 Discussions -- A  Source Identification on Type B and Recessive States-Falling Edges -- B  Detecting Known ECUs -- C  Detecting Unknown ECUs -- References -- EmuIoTNet: An Emulated IoT Network for Dynamic Analysis -- 1 Introduction -- 2 Background and Related Work -- 2.1 Security Issues in IoT Network -- 2.2 IoT Emulation Methods -- 3 Basic Design of EmuIotNet -- 3.1 Design Goals -- 3.2 Overview Architecture -- 3.3 Challenges -- 4 Implementation Details -- 4.1 IoT Device Emulation -- 4.2 Companion Application Emulation -- 4.3 Network Models -- 4.4 IP Configuration -- 5 Evaluation -- 5.1 Scalability in Device Emulation -- 5.2 Compatibility in Network Setup -- 5.3 Dynamic Analysis on Networks -- 6 Discussion and Conclusion -- References -- Software Security -- ACGVD: Vulnerability Detection Based on Comprehensive Graph via Graph Neural Network with Attention -- 1 Introduction -- 2 Related Work -- 3 ACGVD Pipeline -- 3.1 Overview of ACGVD -- 3.2 Comprehensive Graph Representation -- 3.3 Node Feature Initialization -- 3.4 Double-Level Attention Mechanism -- 3.5 Classifier Module -- 4 Experiments -- 4.1 Datasets -- 4.2 Implementation Details -- 4.3 Evaluation Metrics -- 5 Experiments Study -- 5.1 How Effective Is ACGVD When Compared with the Traditional Static Analysis Tools? -- 5.2 How Effective Is ACGVD When Compared with Deep Learning Method Based on Single Semantic Graph? -- 5.3 How Effective Is



ACGVD When Compared with Graph Neural Network Method Without Attention Mechanism? -- 5.4 What Is the Impact of Modifying the Classifier on the Experiment? -- 6 Threats Factors -- 7 Conclusion -- References -- TranFuzz: An Ensemble Black-Box Attack Framework Based on Domain Adaptation and Fuzzing.

1 Introduction.