1.

Record Nr.

UNISA996386087803316

Autore

Pasor George <1570-1637.>

Titolo

Lexicon Græco-Latinum in Novum Domini Nostri Jesu Christi Testamentum [[electronic resource] ] : ubi omnium vocabulorium, tam appellativorum themata, quàm nominum propriorum etyma, exquisitè indicantur, & grammaticè resolvuntur : cum indice Græcarum & Latinarum N.T. vocum accuratissimo : cui insuper nunc dem`um accesserunt Tractatus duo, unus de Graæcis N.T. accentibus, alter de dialectis : uterque apprim`e utilis, & æqu`e desideratus : in gratiam sacr. lit. & languæ Græcæ studiosorum / / autore Georgio Pasore

Pubbl/distr/stampa

Londini, : Excudebat Jacobus Junius, impensis Richardi Whittakeri, 1644

Descrizione fisica

719, [119], 88, [8], 46 p

Soggetti

Latin language - Dictionaries - Greek, Biblical

Greek language, Biblical - Latin

Names in the Bible

Names, Greek

Greek language - Etymology - Names

Lingua di pubblicazione

Latino

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Text in Greek and Latin.

"Etyma nominum propriorum, itemque analysis Hebræorum, Syriacorum, & Latinorum vocabulorum, quæ in Novo Testamento uspiam occurrunt" has special t.p. and separate paging.

"Orthotonia, sive, Tractatus de Græcis Novi Testamenti accentibus ..." has special t.p. and separate paging. Greek at head of title.

Index: p. [2]-[109] and [1]-[7]

Reproduction of original in Cambridge University Library.

Sommario/riassunto

eebo-0021



2.

Record Nr.

UNISA996466402103316

Autore

Jeribi Aref

Titolo

Perturbation theory for linear operators : denseness and bases with applications / / Aref Jeribi

Pubbl/distr/stampa

Singapore : , : Springer, , [2021]

©2021

ISBN

981-16-2528-X

Descrizione fisica

1 online resource (523 pages)

Disciplina

515.7246

Soggetti

Spectral theory (Mathematics)

Linear operators

Teoria espectral (Matemàtica)

Operadors lineals

Llibres electrònics

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Nota di contenuto

Intro -- Preface -- Introduction -- References -- Contents -- About the Author -- Symbols Description -- 1 Basic Notations and Results -- 1.1 Spaces and Operators -- 1.1.1 Vector and Normed Spaces -- 1.1.2 Operators on Quasi-Banach Spaces -- 1.1.3 Closed and Closable Operators -- 1.1.4 Adjoint Operator -- 1.1.5 Fredholm Operators -- 1.2 Some Notions of Spectral Theory -- 1.2.1 Closed Graph Theorem -- 1.2.2 Resolvent Set and Spectrum -- 1.2.3 Bounded Operators -- 1.2.4 Numerical Range -- 1.3 Inequalities -- 1.4 Closed Operators -- 1.4.1 Closed Operator Perturbations -- 1.4.2 A-Bounded, A-Closed, and A-Closable -- 1.5 Lebesgue-Dominated Convergence Theorem -- 1.6 Compact, Weakly Compact, Strictly Singular ... -- 1.6.1 Compact Operator -- 1.6.2 Weakly Compact Operator -- 1.6.3 Strictly Singular Operator -- 1.6.4 Discrete Operator -- 1.6.5 Ascent and Descent Operators -- 1.6.6 Riesz Operator -- 1.7 A-Compact Operators -- 1.8 Dunford-Pettis Property -- 1.9 The Jeribi Essential Spectrum -- 1.9.1 Definition -- 1.9.2 A Characterization of the Jeribi Essential Spectrum -- 1.10 Jordan Chain for an Operator and Multiplicities -- 1.11 Laurent Series Expansion of the Resolvent -- 1.12 Bases -- 1.12.1 Algebraic



Bases (Hamel Bases) -- 1.12.2 On a Schauder Basis -- 1.13 Normal Operator -- 1.14 Positive Operators -- 1.15 Spectrum of the Sum of Two Operators -- 1.16 Notes and Remarks -- References -- 2 Analysis with Operators -- 2.1 Projections -- 2.1.1 Generalities -- 2.1.2 Orthogonal Projection -- 2.1.3 Spectral Projection -- 2.1.4 Sum of Spectral Projection -- 2.1.5 l2-Decomposition -- 2.2 Spectral Theory of Compact and Discrete Operators -- 2.2.1 Riesz-Schauder Theorem -- 2.2.2 Discrete Operators -- 2.3 Functions -- 2.3.1 Function of Finite Order -- 2.3.2 Function of Sine Type -- 2.3.3 Generating Function in L2(0, T) -- 2.4 Phragmén-Lindelöf Theorems.

2.5 Holomorphic Operator Functions -- 2.5.1 Spectrum and Multiplicities -- 2.5.2 Zeros of a Holomorphic Function -- 2.5.3 Determinant of Operator -- 2.6 Semigroup Theory -- 2.6.1 Definitions -- 2.6.2 Example -- 2.7 Concepts of Subordination and Fully Subordination -- 2.7.1 Concepts of Subordination -- 2.7.2 Concepts of Fully Subordination -- 2.8 Notes and Remarks -- References -- 3 Series of Complex Terms -- 3.1 Identity Results -- 3.1.1 Technical Results -- 3.1.2 Proof of Eq. (3.0.1) When (ak)k equiv1 -- 3.1.3 General Case -- 3.2 Duality Bracket -- 3.2.1 Proof of Eq. (3.2.1) When (ak)k equiv1 -- 3.2.2 Proof of Eq. (3.2.1) When (ak)k1 is Any Sequence in mathbbC -- 3.3 Notes and Remarks -- References -- 4 Carleman-Class -- 4.1 Singular Values -- 4.1.1 Singular Values of a Compact Operator -- 4.1.2 Polar Representation of a Bounded Operator -- 4.1.3 The Dimension of an Operator -- 4.1.4 The Schmidt Expansion of a Compact Operator -- 4.1.5 Some Properties of Singular Values -- 4.1.6 Intermediate Ideals Between F(X) and mathcalK(X) -- 4.2 Spectral Theory of Compact Operators -- 4.2.1 Quasi-Nilpotent Operator -- 4.2.2 Entire Function -- 4.3 Generalized Eigenvectors Associated with the Non-zero Eigenvalues -- 4.3.1 Holomorphic Function -- 4.3.2 Norm of the Resolvent -- 4.4 calCp Carleman-Class -- 4.4.1 Definition -- 4.4.2 The Resolvent Representation -- 4.4.3 Some Properties of calCp Carleman-Class -- 4.5 Fredholm Determinant -- 4.6 Notes and Remarks -- References -- 5 The Evolutionary Problem -- 5.1 Semigroups -- 5.1.1 Basic Elementary Properties of Semigroups -- 5.1.2 The Infinitesimal Generator of a Continuous Semigroup -- 5.1.3 Hille-Yosida Theorem -- 5.1.4 The Differentiability of the Semigroup -- 5.2 Fractional Operators -- 5.2.1 Dunford Integral -- 5.2.2 Fractional of Carleman-Class Operators.

5.3 Expansions on Generalized Eigenvectors of Operators in Hilbert Space -- 5.3.1 Hypotheses -- 5.3.2 Basic Properties -- 5.3.3 Representation of the Solutions -- 5.3.4 The Simple Case of an Operator with Nuclear Resolvent -- 5.3.5 The Limit Case of an Operator with an Almost Nuclear Resolvent -- 5.4 Notes and Remarks -- References -- 6 Completeness Criteria of the Space  of Generalized Eigenvectors  of Non-Self-Adjoint Operators -- 6.1 Keldysh Results -- 6.1.1 In Hilbert Space -- 6.1.2 In Banach Space -- 6.2 Denseness of the Generalized Eigenvectors  of a Compact Operator or an Operator  with Compact Resolvent -- 6.2.1 Subspace Attached to an Operator with Compact Resolvent -- 6.2.2 Completeness Criteria of the System of Generalized Eigenvectors of an Operator with Compact Resolvent -- 6.2.3 A Density Result of the Space Generated  by the Generalized Eigenvectors of a Compact Operator -- 6.3 Completeness of the System of Root Subspaces -- 6.3.1 Riesz Projection -- 6.3.2 Root Subspaces -- 6.3.3 System of Subspaces -- 6.4 Notes and Remarks -- References -- 7 Bases on Hilbert and Banach Spaces -- 7.1 Some Notions on the Bases of a Vector Space -- 7.1.1 On a Schauder Basis -- 7.1.2 The Coefficient Functionals -- 7.2 Orthonormal Bases in Hilbert Space -- 7.3 Examples of Compact Operators -- 7.3.1 Finite-Rank



Operator -- 7.3.2 Hilbert-Schmidt Operator -- 7.4 Equivalent Bases -- 7.4.1 Image of a Basis Under a Topological Isomorphism -- 7.4.2 Definitions -- 7.4.3 Characterization of Equivalent Bases -- 7.4.4 Near Bases -- 7.5 Hilbert Bases -- 7.6 Riesz Bases -- 7.6.1 On Riesz Bases in a Separable Hilbert Space -- 7.6.2 Riesz Basis of Jordan Chains -- 7.6.3 Basis Property of the Exponential Family -- 7.6.4 Hilbert-Schmidt Operators -- 7.6.5 Perturbation of Riesz Bases in a Separable Hilbert Space -- 7.6.6 Riesz Basis of Operator-Valued Functions.

7.6.7 Riesz Basis of Subspaces -- 7.7 mathcalL-Basis in L2(0,T) -- 7.8 Notes and Remarks -- References -- 8 On a Riesz Basis of Finite-Dimensional Invariant Subspaces -- 8.1 Location of the Spectrum -- 8.2 Riesz Basis -- 8.2.1 On a Riesz Basis of Finite-Dimensional Invariant Subspaces -- 8.2.2 A Large Gap in σ(G) Yields a Gap in σ(T) -- 8.2.3 Riesz Basis -- 8.2.4 Sum of Multiplicities -- 8.2.5 Spectral Riesz Basis of Subspaces -- 8.2.6 A Riesz Basis Associated to a Block Operator Matrix -- 8.2.7 Gap in the Spectrum Around the Imaginary Axis -- 8.3 The Evolutionary Equation -- 8.3.1 C0-Semigroup -- 8.3.2 Riesz Basis of Subspaces -- 8.3.3 Riesz Basis -- 8.4 Notes and Remarks -- References -- 9 Analytic Operators in Feki-Jeribi-Sfaxi's Sense -- 9.1 Family of Operators Dependent of Several Parameters -- 9.2 Invariance of the Closure -- 9.3 Eigenvalues -- 9.4 Eigenvectors -- 9.5 Notes and Remarks -- References -- 10 On a Schauder and Riesz Bases  of Eigenvectors of an Analytic Operator -- 10.1 Completeness of the System of Root Vectors of T(ε) -- 10.1.1 In Banach Space -- 10.1.2 In Hilbert Space -- 10.2 On Riesz Bases in a Separable Hilbert Space -- 10.3 On a Finitely Spectral Riesz Basis of a Family  of Non-normal Operators -- 10.3.1 Spectrum of T(ε) -- 10.3.2 Riesz Basis of Subspaces -- 10.4 Riesz Basis in L2(0, T) -- 10.5 Notes and Remarks -- References -- 11 On the Asymptotic Behavior  of the Eigenvalues of an Analytic Operator in the Sense of Kato -- 11.1 Perturbation of T0 -- 11.2 Behavior of the Spectrum of Perturbed Operator T(ε) Under a Finite Rank Perturbation -- 11.2.1 Discrete Spectrum -- 11.2.2 Estimate Norm -- 11.2.3 Sum of Multiplicities of All Eigenvalues of T(ε)-Kr -- 11.3  Behavior of the Spectrum of Perturbed Operator T(ε) -- 11.3.1 Argument of the Function Dε(λ) -- 11.3.2 Sum of Multiplicities of All Eigenvalues of T(ε).

11.4 Notes and Remarks -- References -- 12 On the Basis Property of Root Vectors Related to a Non-self-adjoint Analytic Operator -- 12.1 Completeness of the System of Root Vectors of T(ε) -- 12.2 Basis with Parentheses of Root Vectors of T(ε) -- 12.2.1 Localization of the Spectrum of T(ε) -- 12.2.2 Basis with Parentheses -- 12.3 Notes and Remarks -- References -- 13 Perturbation Method for Sound Radiation by a Vibrating Plate  in a Light Fluid -- 13.1 Perturbation Method for Sound Radiation  by a Vibrating Plate in a Light Fluid -- 13.1.1 Position of the Problem -- 13.1.2 Open Questions Introduced in ch1313Filippi -- 13.1.3 Spectral Properties of the Operator T0 -- 13.1.4 Spectral Properties of the Resolvent of the Operator T0 -- 13.1.5 Compactness Results -- 13.1.6 Completeness of the System of Root Vectors -- 13.1.7 On a Riesz Basis in L2(-L,L) -- 13.2 Vibrating Plate in a Light Fluid -- 13.2.1 Elementary Results -- 13.2.2 Completeness Results -- 13.2.3 Basis with Parentheses -- 13.3 Notes and Remarks -- References -- 14 Gribov Operator in Bargmann Space -- 14.1 Finite Sum of Gribov Operators on Null Transverse Dimension (n=1) -- 14.2 Infinite Sum of Gribov Operators on Null Transverse Dimension (n=1) -- 14.2.1 Riesz Basis of Subspaces in the Case Where γ=1 -- 14.2.2 On the Asymptotic Behavior of the Eigenvalue  of Gribov Operator in the Case Where γ=0 -- 14.2.3 Basis with Parentheses of Gribov Operator in the Bargmann Space in the Case Where γ=0 -- 14.3 Notes and Remarks



-- References -- 15 Applications in Mathematical Physics and Mechanics -- 15.1 Time-Dependent Rectilinear Transport Equation -- 15.1.1 Resolvent and Spectrum of A -- 15.1.2 Distribution of the Eigenvalues of the Operator A -- 15.1.3 Differentiability of the Semigroup Generated by A -- 15.2 Behavior of Resolvent in the Case of the Lamé System.

15.2.1 Explicit Expression for the Operator A.