1.

Record Nr.

UNINA990004602870403321

Autore

Hupe, Conradus

Titolo

<De genere dicendi C. Valerio Catulli Veronensis : Pars I / scripsit Conradus Hupe>

Pubbl/distr/stampa

s.l. : s.e, 1871

Descrizione fisica

44 p. ; 21 cm

Locazione

FLFBC

Collocazione

I D 71

Lingua di pubblicazione

Italiano

Formato

Materiale a stampa

Livello bibliografico

Monografia

2.

Record Nr.

UNISA996214876603316

Titolo

Fish Pathology [[ギョビョウケンキュウ]]

Pubbl/distr/stampa

Tōkyō, : Nihon Gyobyō Gakkai

ISSN

1881-7335

Descrizione fisica

1 online resource

Soggetti

Fishes - Diseases

Veterinary pathology

Poissons - Maladies

Pathologie vétérinaire

Lingua di pubblicazione

Giapponese

Formato

Materiale a stampa

Livello bibliografico

Periodico

Note generali

Refereed/Peer-reviewed



3.

Record Nr.

UNINA9910731475303321

Autore

Xie Le

Titolo

Data Science and Applications for Modern Power Systems / / by Le Xie, Yang Weng, Ram Rajagopal

Pubbl/distr/stampa

Cham : , : Springer International Publishing : , : Imprint : Springer, , 2023

ISBN

3-031-29100-X

Edizione

[1st ed. 2023.]

Descrizione fisica

1 online resource (446 pages)

Collana

Power Electronics and Power Systems, , 2196-3193

Altri autori (Persone)

WengYang

RajagopalRam

Disciplina

621.3192

Soggetti

Electric power production

Big data

Business information services

Electrical Power Engineering

Big Data

IT in Business

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Nota di contenuto

Big Data Challenges in Power Systems -- Challenges and Opportunities in Utility Data -- Wholesale Markets Data Deluge -- Distribution System Data Operation -- Synchrophasor Data Analytics -- Smart Meter and its Implications -- Deep Learning in Power Markets -- Data-driven Planning in Electric Energy Systems -- Common Information Model for Unifying Data Sets -- Inference and Business for Aggregators Non-intrusive Load Monitoring -- Utility Business Model in the Era of Big Data -- Data Security Services for Utilities.

Sommario/riassunto

This book offers a comprehensive collection of research articles that utilize data—in particular large data sets—in modern power systems operation and planning. As the power industry moves towards actively utilizing distributed resources with advanced technologies and incentives, it is becoming increasingly important to benefit from the available heterogeneous data sets for improved decision-making. The authors present a first-of-its-kind comprehensive review of big data opportunities and challenges in the smart grid industry. This book



provides succinct and useful theory, practical algorithms, and case studies to improve power grid operations and planning utilizing big data, making it a useful graduate-level reference for students, faculty, and practitioners on the future grid. Presents a comprehensive review of data sciences for the power industry; Contains state-of-the-art research articles; Provides practical algorithms and case studies.