| |
|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNISA996213308203316 |
|
|
Autore |
White Joseph F. <1938-> |
|
|
Titolo |
High frequency techniques [[electronic resource] ] : an introduction to RF and microwave engineering / / Joseph F. White |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
[Piscataway, N.J.?], : IEEE Press |
|
Hoboken, N.J., : Wiley-Interscience, c2004 |
|
|
|
|
|
|
|
|
|
ISBN |
|
1-119-33604-X |
1-280-34469-5 |
9786610344697 |
0-470-35515-8 |
0-471-47481-9 |
0-471-47482-7 |
|
|
|
|
|
|
|
|
Edizione |
[1st ed] |
|
|
|
|
|
Descrizione fisica |
|
1 online resource (xxii, 502 pages) : illustrations |
|
|
|
|
|
|
Collana |
|
New York Academy of Sciences Ser. |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Microwave circuits |
Radio circuits |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
Description based upon print version of record |
|
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references and index. |
|
|
|
|
|
|
Nota di contenuto |
|
HIGH FREQUENCY TECHNIQUES; CONTENTS; Preface; Acknowledgments; 1 Introduction; 1.1 Beginning of Wireless; 1.2 Current Radio Spectrum; 1.3 Conventions Used in This Text; Sections; Equations; Figures; Exercises; Symbols; Prefixes; Fonts; 1.4 Vectors and Coordinates; 1.5 General Constants and Useful Conversions; 2 Review of AC Analysis and Network Simulation; 2.1 Basic Circuit Elements; The Resistor; Ohm's Law; The Inductor; The Capacitor; 2.2 Kirchhoff's Laws; 2.3 Alternating Current (AC) Analysis; Ohm's Law in Complex Form; 2.4 Voltage and Current Phasors; 2.5 Impedance; Estimating Reactance |
Addition of Series Impedances 2.6 Admittance; Admittance Definition; Addition of Parallel Admittances; The Product over the Sum; 2.7 LLFPB Networks; 2.8 Decibels, dBW, and dBm; Logarithms (Logs); Multiplying by Adding Logs; Dividing by Subtracting Logs; Zero Powers; Bel Scale; Decibel Scale; Decibels-Relative Measures; Absolute Power Levels-dBm and dBW; Decibel Power Scales; 2.9 Power Transfer; Calculating Power Transfer; Maximum Power Transfer; 2.10 Specifying Loss; Insertion |
|
|
|
|
|
|
|
|
|
|
|
Loss; Transducer Loss; Loss Due to Series Impedance; Loss Due to Shunt Admittance |
Loss in Terms of Scattering Parameters 2.11 Real RLC Models; Resistor with Parasitics; Inductor with Parasitics; Capacitor with Parasitics; 2.12 Designing LC Elements; Lumped Coils; High m Inductor Cores-the Hysteresis Curve; Estimating Wire Inductance; Parallel Plate Capacitors; 2.13 Skin Effect; 2.14 Network Simulation; 3 LC Resonance and Matching Networks; 3.1 LC Resonance; 3.2 Series Circuit Quality Factors; Q of Inductors and Capacitors; Q(E), External Q; Q(L), Loaded Q; 3.3 Parallel Circuit Quality Factors; 3.4 Coupled Resonators; Direct Coupled Resonators; Lightly Coupled Resonators |
3.5 Q Matching Low to High Resistance; Broadbanding the Q Matching Method; High to Low Resistance; 4 Distributed Circuit Design; 4.1 Transmission Lines; 4.2 Wavelength in a Dielectric; 4.3 Pulses on Transmission Lines; 4.4 Incident and Reflected Waves; 4.5 Reflection Coefficient; 4.6 Return Loss; 4.7 Mismatch Loss; 4.8 Mismatch Error; 4.9 The Telegrapher Equations; 4.10 Transmission Line Wave Equations; 4.11 Wave Propagation; 4.12 Phase and Group Velocities; 4.13 Reflection Coefficient and Impedance; 4.14 Impedance Transformation Equation; 4.15 Impedance Matching with One Transmission Line |
4.16 Fano's (and Bode's) Limit Type A Mismatched Loads; Type B Mismatched Loads; Impedance Transformation Not Included; 5 The Smith Chart; 5.1 Basis of the Smith Chart; 5.2 Drawing the Smith Chart; 5.3 Admittance on the Smith Chart; 5.4 Tuning a Mismatched Load; 5.5 Slotted Line Impedance Measurement; 5.6 VSWR = r; 5.7 Negative Resistance Smith Chart; 5.8 Navigating the Smith Chart; 5.9 Smith Chart Software; 5.10 Estimating Bandwidth on the Smith Chart; 5.11 Approximate Tuning May Be Better; 5.12 Frequency Contours on the Smith Chart; 5.13 Using the Smith Chart without Transmission Lines |
5.14 Constant Q Circles |
|
|
|
|
|
|
Sommario/riassunto |
|
A practical guide for today's wireless engineer High Frequency Techniques: An Introduction to RF and Microwave Engineering is a clearly written classical circuit and field theory text illustrated with modern computer simulation software. The book's ten chapters cover:* The origins and current uses of wireless transmission* A review of AC analysis, Kirchhoff's laws, RLC elements, skin effect, and introduction to the use of computer simulation software* Resonators, Q definitions, and Q-based impedance matching* Transmission lines, waves, VSWR, reflection phenomena, Fano's |
|
|
|
|
|
|
|
| |