|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNISA996209064303316 |
|
|
Autore |
Artin Emil <1898-1962.> |
|
|
Titolo |
Geometric algebra [[electronic resource] /] / E. Artin |
|
|
|
|
|
Pubbl/distr/stampa |
|
|
New York, : Interscience Publishers, 1988, c1957 |
|
|
|
|
|
|
|
ISBN |
|
1-283-33250-7 |
9786613332509 |
1-118-16451-2 |
1-118-16454-7 |
|
|
|
|
|
|
|
|
Edizione |
[Wiley classics library ed.] |
|
|
|
|
|
Descrizione fisica |
|
1 online resource (226 p.) |
|
|
|
|
|
|
Collana |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Algebras, Linear |
Geometry, Projective |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
Description based upon print version of record. |
|
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references and index. |
|
|
|
|
|
|
Nota di contenuto |
|
Geometric Algebra; Preface; Suggestions for the Use of This Book; CONTENTS; CHAPTER I Preliminary Notions; 1. Notions of set theory; 2. Theorems on vector spaces; 3. More detailed structure of homomorphisms; 4. Duality and pairing; 5. Linear equations; 6. Suggestions for an exercise; 7. Notions of group theory; 8. Notions of field theory; 9. Ordered fields; 10. Valuations; CHAPTER II Affine and Projective Geometry; 1. Introduction and the first three axioms; 2. Dilatations and translations; 3. Construction of the field; 4. Introduction of coordinates; 5. Affine geometry based on a given field |
6. Desargues' theorem7. Pappus' theorem and the commutative law; 8. Ordered geometry; 9. Harmonic points; 10. The fundamental theorem of projective geometry; 11. The projective plane; CHAPTER III Symplectic and Orthogonal Geometry; 1. Metric structures on vector spaces; 2. Definitions of symplectic and orthogonal geometry; 3. Common features of orthogonal and symplectic geometry; 4. Special features of orthogonal geometry; 5. Special features of symplectic geometry; 6. Geometry over finite fields; 7. Geometry over ordered fields-Sylvester's theorem; CHAPTER IV The General Linear Group |
1. Non-commutative determinants2. The structure of GLn(κ); 3. Vector spaces over finite fields; CHAPTER V The Structure of Symplectic and |
|
|
|
|